WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     || 2 |
Физика твердого тела, 2003, том 45, вып. 4 Магнитная и орбитальная структуры манганитов в области электронного легирования © С.М. Дунаевский, В.В. Дериглазов Петербургский институт ядерной физики им. Б.П. Константинова Российской академии наук, 188350 Гатчина, Ленинградская обл., Россия E-mail: dunaevsk@mail.pnpi.spb.ru (Поступила в Редакцию 26 августа 2002 г.) Рассчитаны полные энергии различных магнитных и орбитальных конфигураций манганитов лантана La1-y CayMnO3 в области электронного легирования y > 0.5 с учетом расщепления eg-уровня марганца.

Для определения состояния системы впервые выполнена минимизация полной энергии как по углу между спинами соседних ионов Mn4+, так и по двум углам орбитального смешивания, определяющим тип орбитального упорядочения в рассматриваемой системе. Полученные для T = 0 K фазовые диаграммы манганитов правильно описывают наблюдаемое в эксперименте с ростом концентрации электронов чередование магнитных орбитально упорядоченных структур в области реальных значений межионного обменного параметра Гейзенберга, параметра внутриионного обмена и интеграла перескока.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 00-62-16729 и российско-белорусский грант № 02-02-81012 Бел2002-а).

Одной из особенностей физики манганитов от искажений кислородного октаэдра, не задавался, La1-x CayMnO3 (y = 0-1) является наблюдаемая а находился в результате минимизации полной энергии асимметрия их фазовых диаграмм относительно по углу и по двум углам орбитального внутриатомного значения y = 0.5 [1,2], природа которой пока до смешивания i. Таким образом, найдены равновесные конца не выяснена. В [3] было отмечено, что одной магнитные и орбитальные конфигурации манганитов из причин асимметрии свойств является различие La1-yCay MnO3 при T = 0 K и значениях y = 0.5-1.

спектров E(k) носителей заряда в антиферромагнитных (АФ) структурах A, G и C, возникающее в результате 1. Метод расчета учета орбитального вырождения eg-уровня в модели двойного обмена. В [4] показано, что учет орбитального Данная работа посвящена расчетам равновесных магвырождения не только изменяет спектр носителей нитных и орбитальных структур манганитов при T = 0K E(k) при переходе от одной магнитной структуры для значений y = 0.5-1, когда в первом приближении к другой, но и влияет на условия возникновения либо можно не рассматривать внутри- и межатомные кулоколлинеарных, либо скошенных (A, G, C и F) магнитных новские взаимодействия.

структур, отвечающих минимуму полной энергии. Для В работе использовался эффективный гамильтониан нахождения магнитной конфигурации основного манганитов, учитывающий двойной обмен, внутриатомсостояния системы при фиксированном значении ное хундовское взаимодействие eg- и t2g-электронов, x = 1 - y необходимо было вычислять спектр E(k, ) гейзенберговское взаимодействие локальных магнитносителей заряда (электронов) в скошенных A, G, C ных моментов t2g-электронов Si друг с другом и яни F магнитных структурах, зависящий от угла между теллеровское расщепление eg-уровня марганца спинами ионов марганца, принадлежащих различным + + магнитным подрешеткам. Здесь следует отметить, что H = i di di + ti jdi d + Ji jSiSj j ранее [5–8] для расчета энергий АФ структур A, G i i j i j и C использовался спектр E(k), рассчитанный для di cos i sin i ферромагнитного (ФМ) типа спинового упорядочения + + + · (di di ). (1) i sin i - cos i ( = 0), а минимизации полной энергии по углу не di i проводилось. Выполненные в [4] расчеты позволили получить неблюдаемое в эксперименте чередование фаз Индексы, нумеруют eg-орбитали; индексы i, j — G-C-A с ростом концентрации носителей (электронов) атомы; i = d - JHS, i = d + JH(S + 1), d — в области реальных значений параметров межатомного энергия невозмущенного eg-уровня иона Mn4+ тии внутриатомного обмена. Правильное качественное па, JH — внутриатомный хундовский интеграл описание эксперимента было достигнуто только (для Mn3+ его значение, вычисленное в [3], оказа+ в результате учета расщепления eg-уровня марганца для лось равным 0.25 eV); di (di ) — операторы рождеАФ структур A и C и задания для каждой структуры ния (уничтожения) eg-электрона типа на узле i;

определенного типа орбитального упорядочения. В дан- — спиновый индекс; Ji j = JAF — обменные интеграной работе тип орбитального упорядочения, зависящий лы модели Гейзенберга локализованных t2g-электронов;

682 С.М. Дунаевский, В.В. Дериглазов ti j — интегралы перескока между орбиталями и фазе A 2 = d1 - d2 > 0 (кроме случая y = 0). Для ионов марганца i и j. Явный вид всех интегралов магнитной фазы C знак расщепления будет обратным перескока для атомного базиса, когда | = |1 = |z (см. [10]). Расщепление 2 принималось пропорциональи | = |2 = |x2 - y2, приведен в [3]. В модели двой- ным x = 1-y таким образом, чтобы в предельном случае ного обмена интеграл перескока ti j зависит от угла y = 0 получить значение |d1-d2| = 0.3-0.5eV [11] для между локальными магнитными моментами ближай- A-фазы LaMnO3.

ших ионов марганца i j, а численное значение t для Численные расчеты были проведены для различных манганитов лежит в интервале 0.1-0.3eV (см. [3]). значений концентрации электронов x = 1 - y и наборов В АФ структуре G для ближайших соседей i j =. параметров JH/t и JAF/t, где JAF = 1.5meV (в отсутВ C-структуре спины ионов Mn образуют ФМ цепочки, ствие легирования для CaMnO3 TN = 141 K). Полученперпендикулярные плоскости XY. В этой плоскости ные результаты не распространяются на область в непоi j = xy =, а в цепочке i j = z = 0. В A-структуре средственной близости от стехиометричного состава соседние ФМ плоскости, в которых i j = xy = 0, упо- x = 0.5, так как в работе не рассматривалась магнитная рядочены антиферромагнитно относительно друг друга, CE-структура, связанная с эффектом зарядового упорят. е. i j = z =, когда атомы с индексами i и j при- дочения. Полные энергии всех конфигураций минимизинадлежат соседним плоскостям. В ФМ структуре всегда ровались по соответствующим углам и i, в результате i j = 0. Для всех рассматриваемых АФ структур может чего для каждого значения электронной концентрации быть отличен от нуля всего один угол i j, поскольку определялись равновесные магнитная и орбитальная более сложные АФ структуры, характеризуемые двумя структуры.

различными углами i j, в манганитах в эксперименте Энергия, приходящаяся на один атом марганца фадо сих пор не наблюдались. Параметр описывает зы G, вычислялась как i ян-теллеровское расщепление изначально вырожденного EG(x,, 1, 2) =-3JAFS2 cos eg-уровня. Чтобы учесть влияние орбитального упорядочения на формирование той или иной магнитной F структуры, в работе использовался произвольный атом+ nG(,, 1, 2)d, (3) ный базис | и |, связанный с исходным базисным i i преобразованием i i где S = 3/2, F — уровень Ферми, а nG(,, 1, 2) — | i cos sin |1 i 2 =, (2) плотность состояний фазы G. Плотность состояний i i | - sin cos |2 i i находилась суммированием по соответствующей зоне 2 Бриллюэна спектра E(k,, 1, 2), вычисленного путем где i — угол внутриатомного орбитального смешивадиагонализации матрицы (8 8) из [3] гамильтониана ния. После такого преобразования интеграл перескока G-структуры, модифицированной с учетом преобразоti j зависит уже от трех углов: i j, i и j. Поскольвания (2). Аналогичным образом вычислялись полные ку в работе рассматриваются только АФ структуры, энергии всех остальных магнитных структур (см. [4]).

состоящие их двух магнитных подрешеток, возможные типы орбитального упорядочения совпадают с типами магнитных конфигураций (A, G, C, F). Так, орбиталь- 2. Результаты расчета ная ФМ структура соответствует всего лишь одному и их обсуждение углу смешивания i на всех узлах. В АФ орбитальных структурах A, G и C каждой подрешетке отвечает На рис. 1 представлены зонные структуры для магсвой угол орбитального смешивания — 1 или 2 — нитных фаз A и C. В отсутствие расщепления eg-уровня а сами подрешетки определяются так же, как и для (жирная линия) зонная структура для обеих фаз не завимагнитных конфигураций. При значениях i = 0 либо сит от углов орбитального смешивания. При расщеплеорбитальные структуры являются коллинеарными, а при нии eg-уровня ( = 1) электронные зоны претерпевают i = 0 — скошенными. изменение в зависимости от типа орбитального порядка.

Без учета последнего члена в гамильтониане (1) Видно, что для структуры A ФМ орбитальное упоряпреобразование (2) никак не влияет на спектр и полную дочение |x2 - y2 (1,2 =, точечная линия) выгоднее, энергию магнитных конфигураций. Однако при учете чем упорядочение |3z - r2 (1,2 = 0, тонкая сплошная ян-теллеровского расщепления eg-уровня электронная линия), тогда как для структуры C ситуация обратная.

часть полной энергии системы начинает зависеть от типа В отсутствие свободных электронов магнитные фазы орбитального порядка (значений 1 и 2). Известно, в порядке возрастания их магнитных энергий распочто в соединении (La–Nd)1-y Sry MnO3 [9] для значе- лагаются как G, C, A и F. С ростом x в результате ний y = 0.52-0.62 экспериментально наблюдалась АФ конкуренции между кинетической и магнитной энергиструктура A с преимущественным заполнением орбита- ями системы реализуется одно из магнитных состояний.

лей типа |2. Кроме того, существуют и теоретические На рис. 2 представлены фазовые диаграммы системы предпосылки [7,10] для утверждения, что в магнитной La1-yCay MnO3 в области x = 0-0.5 без расщепления Физика твердого тела, 2003, том 45, вып. Магнитная и орбитальная структуры манганитов в области электронного легирования На рис. 3 изображены фазовые диаграммы, рассчитанные с учетом расщепления eg-уровня, пропорционального электронной концентрации 2 = 3tx, и с оптимизацией по спиновому углу и орбитальным углам 1,2.

Расщепление существенно изменяет характер фазовых диаграмм. В области x 0.4 на диаграмме в координатах (x, JH/t) вновь возникает фаза A, а межфазные границы лишь незначительно сдвигаются с ростом параметра JH/t. В результате качественный вид фазовой диаграммы (JAF/t, x) практически не зависит от JH. В скошенной фазе G реализуется ФМ орбитальный порядок типа |3z - r2 > (1,2 = 0). Он трехкратно вырожден: равновероятны орбитальные порядки |3y2 - r2 (1,2 = 2/3) и |3x2 - r2 (1,2 = 4/3). Фаза C коллинеарна, за исключением небольшой области C с ФМ орбитальным порядком |3z - r2. Две области коллинеарной фазы A с ФМ типом орбитального порядка |x2 - y2 (1,2 = ) связаны узкой областью A, в которой конкуренция между орбитальным и спиновым упорядочением порождает различные комбинации коллинеарной либо скошенной спиновой структуры типа A с ФМ орбитальным порядком, к которому может подмешиваться АФ орбитальный порядок. Поведение угла скашивания (-) и орбитальных углов 1,2 вдоль Рис. 1. Зонные структуры фаз A (a) и C (b) для случаев штриховой прямой, проходящей через область A, покавырожденного eg-уровня (жирные линии, = 0) и расщепленного eg-уровня ( = ±t) для двух типов ферромагнитного орбитального порядка 1,2 = 0 (тонкие линии) и (точки).

eg-уровня в координатах (x, JH/t) для обменного параметра JAF = 0.015t, характерного для CaMnO3 при t = 0.1 eV, и в координатах (x, JAF/t) для JH = 2.5t. Тонкие линии соответствуют межфазным границам в коллинеарном приближении, а жирные линии — при допущении возможности скашивания спинов. В широкой области значений JAF и x равновесной магнитной структурой является ФМ фаза. Это противоречит экспериментальному факту, согласно которому ФМ фаза в области концентраций x < 0.5 наблюдается крайне редко (см. [9]). Обычно в области электронного леги рования наблюдаются магнитные фазы C (x 0.1-0.4) = и A (x 0.4-0.5) [12]. Из расчета следует, что „пра= вильное“ чередование фаз G-C-A с ростом x возможно в коллинеарном приближении лишь в интервале 0.033 < JAF/t < 0.043, соответствующем слишком большим значениям JAF. Скашивание подрешеток только усугубляет ситуацию: скошенная фаза G существенно вытесняет остающиеся коллинеарными фазы (существует лишь узкая область C скошенной фазы C при x 0.08), = при этом фаза A в промежуточной области легирования Рис. 2. Магнитные фазовые диаграммы для случая выроx > 0.4 полностью исчезает. Соответствующие углы жденного eg-уровня ( = 0): (JH/t, x) (a) и (JAF /t, x) (b), скоса для структуры G примерно пропорциональны x рассчитанные в коллинеарном приближении (тонкие линии) и достигают 180 на границе G-F. и с учетом скашивания спинов (жирные линии).

Физика твердого тела, 2003, том 45, вып. 684 С.М. Дунаевский, В.В. Дериглазов терным для них орбитальным порядком при концентрации электронов x = 0-0.5 для реальных значений параметров внутри- и межионного обмена.

Список литературы [1] S. Mori, C.H. Chen, S.W. Cheong. Nature (London) 392, (1998).

[2] R. Maezono, S. Ishihara, N. Nagaosa, Phys. Rev. B 57, R13993 (1998).

[3] С.М. Дунаевский. ФТТ 43, 2161 (2001).

[4] С.М. Дунаевский, В.В. Дериглазов. ФТТ 44, 12, (2002).

[5] H. Shiba, R. Shina, A. Takahashi. J. Phys. Soc. Jpn. 66, (1997).

[6] J. van den Brink, D. Khomskii. Phys. Rev. Lett. 82, (1999).

[7] Liang-Jian Zou. Phys. Rev. B 63, 155 103 (2001).

[8] G. Venketeswara Pai. Phys. Rev. B 63, 064 431 (2001).

[9] T. Akimoto, Y. Maruyama, Y. Moritomo, A. Nakamura, K. Hirota, K. Ohoyama, M. Ohashi. Phys. Rev. B 57, R(1998).

[10] R. Maezono, S. Ishihara, N. Nagaosa. Phys. Rev. B 58, 11 (1998).

[11] J.W. Liu, Z. Zeng, Q.Q. Zheng, H.Q. Lin. Phys. Rev. B 60, 12 968 (1999).

[12] R. Kajimoto, H. Yoshizawa, H. Kawano, H. Kuwahara, Рис. 3. Магнитные фазовые диаграммы для случая расщепленY. Tokura, K. Ohoyama, M. Ohashi. Phys. Rev. B 60, ного eg-уровня ( x): (JH/t, x) (a) и (JAF /t, x) (b), на вставке (1999).

показана зависимость от степени легирования угла спинового [13] H. Kawano, R. Kajimoto, H. Yoshizawa, Y. Tomioka, скашивания (-) и углов орбитального смешивания 1,H. Kuwahara, Y. Tokura. Phys. Rev. Lett. 78, 4253 (1997).

вдоль штриховой линии, проходящей через область A.

[14] C. Autret, B. Raveau, M. Hervieu, A. Maignon, C. Martin, G. Andre, F. Bouree, A. Kurbakov, V. Trunov. J. Magn. Magn.

Mater. (2002), in press.

зано на вставке нижней диаграммы рис. 3. ФМ фаза F имеет ФМ орбитальный порядок, аналогичный фазе G.

Расщепление eg-уровня стабилизирует магнитный и орбитальный порядки, которые в основном определяются величиной расщепления и его зависимостью степени легирования. В области реальных значений 0.013 < JAF/t < 0.02 чередование магнитных фаз G-C-A и положение межфазных границ хорошо согласуются с экспериментом [9]. Численные расчеты также подтверждают экспериментально наблюдаемую коллинеарность фаз A и C, как это следует, например, из данных по нейтронному рассеянияю в A-фазе Nd1-ySry MnO3 (y > 0.52) [13] и в C-фазе Sm1-yCay MnO3 (y = 0.8) [14].

Pages:     || 2 |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.