WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     | 1 ||

циала можно достичь путем увеличения числа плоских волн в методе ЭПП и числа векторов обратной решетки В случае Si имеем в разложении произведения периодических частей функE1 = -4.30 мэВ, E2,3,4 = 1.73 мэВ, E5,6 = 3.83 мэВ. ций Блоха.

Физика и техника полупроводников, 2000, том 34, вып. 282 С.М. Зубкова, В.А. Изюмов, Л.Н. Русина, Е.В. Смелянская Список литературы [1] W. Kohn, J.M. Luttinger. В сб.: Проблемы физики полупроводинков, под ред. В.А. Бонч-Бруевича (М., ИЛ, 1957) с. 551.

[2] J.M. Luttinger, W. Kohn. В сб.: Проблемы физики полупроводинков, под ред. В.А. Бонч-Бруевича (М., ИЛ, 1957) с. 515.

[3] R.L. Aggarwal, A.K. Ramdas. Phys. Rev., 140, A1246 (1965);

J.H. Reuszer, P. Fisher. Phys. Rev., 135, A1125 (1964).

[4] T.H. Ning, C.T. Sah. Phys. Rev. B, 4, 3468 (1971).

[5] S.T. Pantelides, C.T. Sah. Sol. St. Commun., 11, 1713 (1972).

[6] S.T. Pantelides, C.T. Sah. Phys. Rev. B, 10, 621 (1974).

[7] S.T. Pantelides. Sol. St. Commun., 14, 1255 (1974).

[8] S.T. Pantelides. Sol. St. Commun., 30, 65 (1979).

[9] L. Resca, R. Resta. Sol. St. Commun., 29, 275 (1979).

[10] J.C. Bourgoin, A. Mauger. Appl. Phys. Lett., 53, 749 (1988).

[11] W. Suttrop, W.J. Choyke, W. Gotz, A. Schoner, G. Pensi, R. Stein, S. Leibenzeder. J. Appl. Phys., 73, 3332 (1993).

[12] W. Suttrop, G. Pensi, W.J. Choyke, R. Stein, S. Leibenzeder.

J. Appl. Phys., 72, 3708 (1992).

[13] С.М. Зубкова, Л.Н. Русина, К.Б. Толпыго. ФТП, 21, (1987).

[14] A. Baldereschi. Phys. Rev. B, 1, 4673 (1970).

[15] M.L. Cohen, T.K. Bergstresser. Phys. Rev., 141, 789 (1966).

[16] M. Altarelli, W.Y. Hsu, R.A. Sabatini. J. Phys. C: Sol. St. Phys., 10, L605 (1977).

[17] R. Resta. J. Phys. C: Sol. St. Phys., 10, L179 (1977).

Редактор Т.А. Полянская A many-valley splitting of shallow donor binding energy in semiconductors with diamond and sphalerite type structures S.M. Zubkova, V.A. Izjumov, L.N. Rusina, E.V. Smelyansky Institute of Material Science Problems, National Academy of Sciences of Ukraine, 252680 Kyiv, Ukraine National Technical University, 252056 Kyiv, Ukraine

Abstract

A successive application of the perturbation theory to solving the Schrdinger’s equation that describes the shallow-donor state in many-valley semiconductors has allowed us to obtain a secular equation its order being equal a valleys’ number. Intervalley interaction matrix elements entering the secular determinant have been constructed in the Bloch pseudofunction representation.

The pseudowave functions have been computed from the local empirical form factors and a basis set of 65 plane waves. These matrix elements differ considerably from those constructed in the plane wave approximation. The impurity centre perturbing potential was approximated as a point screened Coulomb potential.

The numerical calculations have been illustrated by examples of the shallow isochoric donors of V group in Ge and Si. Our results are in excellent agreement with experimental data for the lowest level A1 (1) and have 14–15% discrepancy for levels T1 (3) and E (2).

Физика и техника полупроводников, 2000, том 34, вып.

Pages:     | 1 ||



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.