WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

 

Росийская Академия наук

Институт элементоорганических соединений

имени А.Н.Несмеянова

На правах рукописи

Васильев Виктор Георгиевич

Специфические  взаимодействия  и  особенности реологических свойств  силоксанов

02.00.06 – Высокомолекулярные соединения

АВТОРЕФЕРАТ

диссертации на соискание  ученой степени

доктора химических наук

Москва- 2008

Работа выполнена в лаборатории физики полимеров Института  элементоорганических соединений имени А.Н.Несмеянова Российской академии наук, Москва.

Научный консультант:       доктор химических наук, профессор 

  Папков Владимир Сергеевич

Официальные оппоненты:

  Член-корреспондент РАН, доктор 

  химических  наук, профессор

Куличихин Валерий Григорьевич

  ИНХС им. А.В. Топчиева РАН

 

  доктор химических наук, профессор

Киреев Вячеслав Васильевич

МГХТУ им.  Д.И. Менделеева

доктор химических наук, профессор

Чалых Анатолий Евгеньевич

  ИФХ  РАН

Ведущая организация: Институт синтетических полимерных

материалов РАН

Защита состоится  14  февраля 2008 года в 10 часов на заседании диссертационного совета Д 002.250.02 при Институте  элементоорганических соединений имени  А.Н. Несмеянова РАН по адресу 119991, ГСП-1, г. Москва, В-334, ул. Вавилова, д.28

С диссертацией можно ознакомиться в библиотеке Института  элементоорганических соединений имени  А.Н. Несмеянова РАН

Автореферат разослан «____» января 2008 г.

Ученый секретарь диссертационного совета

к.х.н.  А.Ю. Рабкина

Общая характеристика работы

Актуальность проблемы.  Полиорганосилоксаны – наиболее важный класс элементоорганических полимеров, обладающих высокой термостабильностью. Именно это свойство  обусловило особое положение полиорганосилоксанов среди других полимеров и широкое их использование как основы теплостойких полимерных материалов  различного  технического назначения. Однако этим далеко не исчерпывается необычное поведение этого класса полимеров.  Они обладают также специфическими механическими и реологическими свойствами, которые связаны  со  слабым  межмолекулярным взаимодействием и с высокой гибкостью полимерной силоксановой цепи. Низкая энергия когезии полиорганосилоксанов является, с одной стороны, положительным фактором, поскольку приводит к низким температурам стеклования и к слабой зависимости вязкости и других их физических характеристик от температуры. С другой стороны, слабое межмолекулярное взаимодействие является причиной невысокой механической прочности полиорганосилоксанов по сравнению с традиционными органическими полимерами. Как следствие, увеличение когезионной прочности полиорганосилоксанов при сохранении высокой гибкости их макромолекул является одной из наиболее важных задач в данной области полимерной науки.

В этой связи особое значение приобретает подробное изучение влияния специфических взаимодействий в полиорганосилоксанах на процессы структурообразования в них, проявляющихся в особенностях их физико-химических и физических, в частности реологических свойств. Рассмотрение этой проблемы составляет предмет настоящей диссертации. Проведенное исследование относится как к области химии силоксановых полимеров со специфическими свойствами, так и к отдельному направлению полимерной реологии, изучающему особенности реологического поведения полимеров со специфическим межмолекулярным взаимодействием.

Цель работы – состояла в установлении  влияния специфического межмолекулярного взаимодействия боковых групп в органосилоксанах на реологическое  поведение  и структурообразование,  которое проявляется как в

отсутствие внешнего воздействия,  так и под действием механического поля.

Научная новизна работы.

1. Выявлены и обобщены основные закономерности течения и характер структурообразования в низкомолекулярных и высокомолекулярных силоксанах с различным  уровнем межмолекулярного взаимодействия.

2. Обнаружен и изучен процесс специфического образования обратимой физической сетки в карбоксилсодержащих полидиметилсилоксанах, происходящий при повышении температуры.  Определены  четыре температурных интервала, обусловливающих различную степень структурной организации в карбоксилсодержащих полидиметилсилоксанах.  Разработан способ получения обратимых силоксановых сеток с регулируемыми свойствами и временем жизни.

3. Проведено комплексное исследование реологических и механических свойств силоксановых иономеров, определен вклад межмолекулярных связей различного типа в образование в них обратимой сетчатой структуры. Показано влияние режима деформирования на формирование ориентированной структуры в иономерах и установлены общие принципы формирования термоэластопластов на основе силоксановых иономеров. На основании полученных данных впервые проведено сопоставление реологических свойств телехелевых и статистических иономеров с одинаковой основной цепью.

4. Показано, что образование сетчатой структуры в силоксановых карбоксилсодержащих полимерах и иономерах в значительной степени обусловлено перераспределением внутримолекулярных связей различной природы в межмолекулярные при повышенных температурах.

5. На примере полидиэтилсилоксана прослежен характер изменения реологических свойств в различных фазовых состояниях - кристаллическом, мезоморфном и изотропном. Показано, что характер реологического поведения силоксанов, представляющих собою кондис-кристаллы,  имеет ряд общих черт с реологическими свойствами других полимеров, находящимися в аналогичном фазовом состоянии. Впервые исследован процесс течения полигексилфенилсилоксана и полидиэтилсилоксана, находящихся в мезоморфном состоянии  (колончатой мезофазе). Показано, что пластическое течение  колончатых мезофаз может быть описано в рамках традиционного реологического  подхода к вязкому течению расплавов полимеров.

6. Изучены  основные закономерности течения циклосилоксанов, как с различными триорганилсилокси группами,  так и размером цикла. Установлено, что  увеличение объема триорганилсилокси групп приводит не только к расширению температурной области существования мезофазы, но и к различному характеру зависимости между приложенным напряжением сдвига и скоростью деформации.

7. Впервые установлены основные закономерности течения пластических кристаллов на примере  целой серии стереорегулярных циклосилоксанов, отличающихся как строением бокового обрамления, так и размером цикла. Показано влияние условий деформирования в пластической мезофазе на тип кристаллической структуры. Установлено, что предыстория формирования кристаллической структуры влияет на реологическое поведение  пластических кристаллов.  Изучены реологические свойства органоциклосилоксанов с различным размером цикла.  На примере циклогексасилоксанов изучен механизм течения  пластических мезофаз 2D и 3D типа. Исследованы особенности реологического поведения этого материала в различных мезофазах, а также в переходной области из одной мезофазы в другую.

8. Развит новый способ получения монокристаллов больших размеров, заключающийся в кристаллизации экструдата, находящегося в пластической мезофазе,  в процессе капиллярного течения материала. Новый способ получения монокристаллов путем экструзии позволяет формировать, в зависимости от геометрии капилляра, монокристалл любой формы.

9. На основании установленных закономерностей реологического  поведения силоксанов различных классов,  определяющих специфику их деформирования, предложены подходы к управлению процессом их структурообразования  с целью получения материалов с необходимыми физико-механическими характеристиками.

Практическая значимость работы.

Установленные в работе закономерности течения и структурообразования в силоксанах  с различным уровнем межмолекулярного взаимодействия представляют интерес в практическом аспекте. В частности,  карбоксилсодержащие ПДМС за счет перераспределения  водородных связей, происходящего при повышенных температурах, образуют «физические вулканизаты», не уступающие по своим физико-механическим характеристикам,  химически сшитым ПДМС, полученным традиционными способами пероксидной и радиационной вулканизации, а также сшиванием по концевым винильным или гидроксильным группам. Полученный впервые на основе карбоксилсодержащего ПДМС  «физический вулканизат» обладает некоторыми специфическими свойствами, отличными от  химически сшитых сеток.  Разработка способа получения обратимых силоксановых сеток с регулируемыми свойствами и временем жизни открывает возможности создания новой технологии получения клеев, герметиков, покрытий и других эластомерных изделий.

Обнаруженное структурообразование силоксановых  иономеров в процессе течения через капилляр при температурах выше 140оС, может быть использовано для получения как бесцветных, так и окрашенных прозрачных волокон. Высокая пластичность достаточно термостойкого  ПДЭС в мезоморфном состоянии  может быть использована для оптимизации переработки и улучшения эксплуатационных  свойств различных полимерных композиций.

Установленные закономерности формирования  монокристаллов из пластической мезофазы открыли перспективы целенаправленного получения достаточно протяженных монокристаллов  с различной сингонией и геометрической формой. Проведенное исследование реологических и теплофизических свойств пластических кристаллов и их смесей  актуально в плане их использования в качестве материалов с регулируемой пластичностью и возможного применения подобных композиций в качестве покрытий, аккумулирующих тепловую энергию, а также электропроводящих материалов.

Апробация работы. Результаты по теме диссертации получены в ходе выполнения исследовательских работ по грантам РФФИ 94-03-09456, 95-03-09565, 04-03-32853, 07-03-00970. Материалы диссертации докладывались и обсуждались на: VII Всесоюзной конференции по химии, технологии производства и практическому применению кремнийорганических соединений (Тбилиси -1990); 10 Polymer Networks group meeting and IUPAC 10th international symposium on polymer networks (Ierusalem, 1990);  XVI,  XVII, XXI, XXII, XXIII симпозиумах по реологии (Днепропетровск - 1992, Саратов – 1994, Осташков – 2002, Валдай – 2004, Валдай – 2006); 11th Meeting of the polymer networks group. Networks-92 (San-Diego–1992); Всероссийской научно-технической конференции. Наукоемкие химические технологии (Москва – 1993); Международной конференции по каучуку и резине (Москва – 1994); 12th Polymer networks group Conference. Polymer Networks-94 ( Prague -  1994); International Conference Nano-Structures and self-assemblies in Polymer Systems. (Saint-Petersburg – Moscow 1995); 2nd International Symposium Molecular order and mobility in polymer systems (Saint-Petersburg – 1996); Второй всероссийский каргинский симпозиум. «Химия и физика полимеров в начале XXI века» (Черноголовка – 2000); XI,XIII и XIV Всероссийской конференции  «Структура и динамика молекулярных систем» (Яльчик – 2004, 2006 и 2007); Научном семинаре «Актуальные проблемы реологии» (Барнаул.- 2003); . International Conference Dedicated to 50 th  Anniversary of A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (Москва – 2004); III и IV Международной научной  конференции «Кинетика и механизм кристаллизации» (Иваново – 2004 и 2006);  Х всероссийской конференции  «Кремнийорганические соединения: синтез, свойства, применение» (Москва  - 2005); International Conference “From molecules towards materials” IV Razuvaev Lectures (Nizhny Novgorod – 2005); 14th International Symposium on  Organosilicon Chemistry. ISOSXIV.  3rd European Organosilicon Days (Wurzburg, Germany – 2005);  XII Национальной конференция по росту кристаллов (Москва – 2006);  Первой  международной конференции «Деформация и разрушение материалов» (Москва – 2006); Конференции молодых ученых «Реология и физико-химическая механика гетерофазных систем» (Карачарово-2007); VI Всероссийской конференции молодых ученых «Проблемы механики; Теория, эксперимент и новые технологии.» (Новосибирск – 2007); IV межвузовской конференции молодых ученых  (Санкт-Петербург – 2007).

Публикации. По теме диссертации опубликовано 47 работ, список которых приведен в конце автореферата.

Структура и объем диссертации. Диссертационная работа состоит из введения, 6 глав, заключения, списка литературы и иллюстраций. Диссертация изложена на 312 страницах, содержит  139  рисунков, 10 таблиц и список литературы, включающий 315 источников.

Диссертация  построена следующим образом.  Во введении обосновывается актуальность проблемы и формулируется цель работы. В первой  главе проведен  анализ литературных данных по реологическим свойствам полимеров с углеводородной основной цепью,  имеющих  боковые или концевые группы, образующие между собой водородные связи. Во второй  главе  представлены результаты исследований реологических свойств и особенностей структурообразования карбоксилсодержащих ПДМС.  Третья глава -  обзор литературных данных, касающихся  реологических и механических свойств  иономеров. В четвертой главе приведены экспериментальные результаты исследования реологических и механических свойств статистических и телехелевых  силоксановых иономеров в растворе и блоке. В пятой  главе сопоставлены  литературные данные и результаты собственных экспериментальных исследований механических и реологических свойств мезоморфных силоксанов, образующих  колончатые мезофазы  и пластические кристаллы. В шестой главе приведены используемые в работе методики и характеристики используемых в работе материалов.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Глава 2

Реологические свойства полидиметилсилоксанов,  содержащих боковые карбоксильные группы.

Одной из актуальных проблем реологии является изучение влияния на развитие необратимой деформации различного рода межмолекулярных взаимодействий, приводящих к ограничению подвижности полимерной цепи  или ее сегментов. Крайними случаями проявления таких ограничений, возникающих выше температуры стеклования, являются наличие узлов сетки зацеплений, и ковалентная сетка в химически сшитых эластомерах. Пространственная сетчатая структура, образованная за счет ковалентных связей является термонеобратимой. Узлы такой сетки достаточно устойчивы к действию внешнего напряжения и развитие необратимой деформации в вулканизатах возможно только по механизму химического течения. Время жизни физических узлов, образованных либо за счет зацеплений, либо за счет ван-дер-ваальсовых взаимодействий  чрезвычайно мало и существование таких узлов проявляется при очень коротких временах наблюдения. Гораздо более прочные и стабильные во времени узлы физической природы образуются в результате специфических взаимодействий между макромолекулами. Эти узлы могут в достаточно широком диапазоне изменять вязкие и упругие характеристики  полимеров. В полиорганосилоксанах слабое межмолекулярное взаимодействие является причиной невысоких механических характеристик. Увеличение когезионной прочности полиорганосилоксанов при сохранении высокой гибкости их макромолекул за счет введения групп, способных к проявлению специфических взаимодействий, представляется одним из наиболее перспективных направлений оптимизации их свойств. 

Исследование реологических свойств карбоксилсодержащих полидиметилсилоксанов (ПДМС-К)* (I), проводили на полимерах, содержащих различное количество карбоксильных групп.

  (I)

При дальнейшем изложении  полученных результатов ПДМС-К, содержащие А мол.%  карбоксильных групп, обозначены как ПДМС-К/А, соответственно  ПДМС-К/0.45 обозначает, что полимер содержит 0.45 мол.% карбоксильных групп.В диссертации показано, что  специфические межмолекулярные взаимодействия в полидиметилсилоксанах,  содержащих боковые карбоксильные группы (ПДМС-К) приводят к  более высокой  энергии  активации ______________________________________________________________________

*Синтез карбоксилсодержащих силоксанов и иономеров на их основе был осуществлен к.х.н. О.И. Щеголихиной.

течения и сильно выраженному  неньютоновскому  характеру  течения по сравнению с полидиметилсилоксанами  близких  молекулярных масс.

Характерной особенностью ПДМС-К, отличающей этот полимер от карбоксилатных каучуков с углеродной  основной цепью, является его способность образовывать пространственную сетчатую структуру  при повышенных температурах.

Уже при температурах выше 50С начинается постепенное возрастание вязкости ПДМС-К. При температурах выше 80С  вязкость возрастает очень быстро,  и течение становится невозможным вследствие образования пространственной сетки. Формирование  сетчатой  структуры происходят постепенно. На рис. 1 представлены зависимости модулей упругости  G' и  потерь  G''  от круговой частоты  ω  при  90С, соответствующие различным временам нагрева. В ходе структурообразования происходит переход системы от поведения характерного для упруговязкой жидкости (G'< G'') к поведению типичному для вязкоупругих систем (G' >  G'').  Образовавшаяся  таким образом пространственная

Рис.1. Частотная зависимость G’(1-3) и G”(1’-3’) образцов ПДМС-К/1, выдержанных при 90 С в течение 4 (1,1' ), 8 (2,2’) и 20 (3,3’) часов.

сетка водородных связей достаточно устойчива к температурному воздействию. При повышении температуры до 140С величина G'  меняется незначительно. Лишь при температурах выше 160С,  вследствие диссоциации водородных связей, одновременно с уменьшением  протяженности плато высокоэластичности начинает резко уменьшаться величина  G' особенно заметно при низких . Специфическим свойством пространственной сетки ПДМС-К является ее обратимость. Сформировавшийся сетчатый полимер может быть вновь, без нагревания, переведен  в  исходное вязкотекучее  состояние. Это происходит при  взаимодействии с веществами, сольватирующими межмолекулярные водородные связи: спирты, вода, пиридин и т.п. При воздействии влаги воздуха этот процесс развивается длительно во времени. На рис.2 показано изменение во времени равновесного модуля упругости (G) образцов ПДМС-К/0.45, предварительно нагретых при различных температурах. Видно, что уменьшение G происходит  в образцах, прогретых в любых условиях, причем время этого процесса тем больше, чем выше была температура предварительного нагрева. На рис. 2 сопоставлено также изменение G образцов ПДМС-К, находящихся в условиях атмосферной влажности и в сухой атмосфере. Как видно из рисунка, G образца, находящегося в эксикаторе над CaCl2, после небольшого падения, стабилизируется  и  остается постоянным в течение двух месяцев.

Рис.2. Изменение во времени равновесного модуля упругости при 25оС,  ПДМС-К/0.45  нагретого до: 100 (1), 120 (2), 160 (3,5) и 200С (4). Образцы хранились на воздухе (1-4) и в эксикаторе с CaCl2 (5).

Анализ реологических свойств ПДМС-К позволяет  выделить четыре температурных интервала, характеризующихся различной  степенью его структурной организации. Первый интервал – область температур до 50С. Течение не осложняется процессом структурообразования, т.е. баланс внутри- и межмолекулярных связей смещен в сторону внутримолекулярных связей и сохраняется постоянным. В этом интервале  рост температуры приводит к снижению вязкости.

Во втором  интервале  – (50 – 80С) происходит увеличение числа межмолекулярных связей, но трёхмерная сетчатая структура не образуется. После охлаждения полимер остается в вязкотекучем состоянии.

  Третий интервал – область температур 80 - 160С.  В этом интервале

соотношение внутри- и межмолекулярных связей смещено в сторону межмолекулярных, и процесс агрегации заканчивается образованием пространственной сетчатой структуры.  После охлаждения до комнатной температуры полимер сохраняет сетчатую структуру; модуль упругости его возрастает, что указывает на образование в процессе охлаждения дополнительных физических узлов за счет межмолекулярных связей между карбоксильными группами. 

Четвертый интервал – область выше 160С. В этом интервале наиболее полно реализуются процессы диссоциации как исходных внутримолекулярных, так и образовавшихся межмолекулярных связей между карбоксильными группами.

Таким образом, карбоксилсодержащие полидиметилсилоксаны представляют собой материалы,  в которых в наиболее яркой форме проявляется влияние специфических взаимодействий, на структуру и свойства полимера. Наличие полярных карбоксильных групп приводит к возникновению внутри- и межмолекулярных водородных связей. Вследствие термолабильности водородных связей и большой гибкости слабовзаимодействующих силоксановых цепей в этих полимерах при повышении температуры наблюдается необычный характер формирования пространственной сетчатой структуры, связанный с реорганизацией внутримолекулярных водородных связей в межмолекулярные.

Высокий модуль упругости обратимой физической сетки силоксановых эластомеров, его стабильность во времени, возможность направленного регулирования упругих свойств сетки путем термообработки и управления процессом обратимости сетчатой структуры открывает новые области применения этих материалов в качестве легко удаляющихся покрытий, связующих, герметиков и пленок.

Глава 4

Иономеры на основе карбоксилсодержащего полидиметилсилоксана.

Другим типом полимеров, в которых межмолекулярные связи физической природы кардинально меняют  многие  свойства,  являются ион - содержащие

полимеры (иономеры и полиэлектролиты).

К иономерам относят полимеры с основной неполярной (или слабополярной) цепью и небольшим количеством (менее 15 мол.%) ионных групп, расположенных вдоль или на концах цепи. Введение даже небольшого количества ионных групп приводит к существенному изменению физических свойств полимеров (вязкости, температуры стеклования, механических и вязкоупругих характеристик).

Исследованы реологические и механические свойства Li, Zn, и Ni - содержащих иономеров с концевыми (телехелевые) и статистически расположенными вдоль полимерной цепи боковыми ионными группами (статистические иономеры).

Реологические свойства ПДМС иономеров с концевыми ионными группами. 

Карбоксилсодержащие телехелевые полидиметилсилоксаны (ТХС) (II) представляют собой ньютоновские жидкости, вязкость которых, как видно из рис. 3 (кривая 1), возрастает с увеличением их Мn.  Введение в ТХС ионов металла, в частности цинка,  приводит к значительному росту  вязкости  материала (рис. 3, 

(II)

кривая 2),  особенно сильному  при  низких  значениях  Мn,  причем  с  ростом Мn  вязкость  иономеров уменьшается.  Для иономеров, содержащих  ионы Li+, зависимость имеет аналогичный характер. Наиболее значительное возрастание вязкости (на 9 десятичных порядков) наблюдается для образцов с наименьшей  Мn. Из рисунка  видно также, что при Мn = 2,2104,  вязкость карбоксилсодержащего ТХС практически не отличается от вязкости иономеров той же Мn, а при Мn = 7,5 104  вязкость иономера становится даже меньше, чем вязкость исходного карбоксилсодержащего образца. Очевидно, что в ТХС иономерах при высоких Мn ионные  группы  уже  не  оказывают влияния на  реологические свойства иономера.

В никельсодержащих иономерах течение удалось реализовать только для иономеров  с n  120 (Мn  ≈  9 103), т.к.  никельсодержащие иономеры  на  основе

Рис.3. Зависимость  вязкости

ТХС (1) и Zn-ТХС (2) от Мn.

Рис.4. Зависимость вязкости ТХС-Zn (Мn = 9103)  от степени нейтрализации СООН групп.

низкомолекулярных ТХС вообще не способны к течению, что указывает на более сильное межмолекулярное взаимодействие за счет образующихся координационных связей.

Степень нейтрализации карбоксильных групп, не менее чем Мn,  оказывает влияние на  реологические свойства ТХС.  Как видно  из рис. 4 вязкость цинксодержащих иономеров  увеличивается по мере роста степени нейтрализации почти на 6 десятичных порядков.

Реологические свойства статистических иономеров в блоке.

На  рис. 5  представлена  зависимость G'  ПДМС-К/0.45-Ni  от степени нейтрализации  СООН  групп.  Видно,  что  даже  при  очень  малом  содержании ионов никеля (1 моль Ni2+ на 16 молей СООН) G' возрастает на 2 порядка. При дальнейшем увеличении содержания Ni2+ G' изменяется в пределах одного порядка. Аналогично ведут себя и цинксодержащие иономеры.

Помимо увеличения модуля упругости и вязкости, наличие в ПДКС ионных групп влияет и на характер течения полимера. На рис. 6 приведены кривые течения цинк- и никельсодержащих иономеров. Видно, что рост вязкости с увеличением напряжения сдвига (т.е. дилатансия или shear thickening) наблюдается для цинк и никельсодержащих иономеров на основе ПДМС-К с содержанием СООН групп 2 мол.%.  (кривые 1, 2). В иономере с меньшим содержанием ионов, явление дилатансии отсутствует (кривая 3). 

В  условиях  динамического  режима деформирования иономеров  при частотах, когда  время  жизни  узлов  становится  больше  времени воздействия,

Рис.5. Зависимость G’ ( =1рад/сек) ПДМС-К/0.45-Ni от количества нейтрализованных  СООН групп.

Рис.6.  Кривые течения ПДМС-К/2-Ni (1), ПДМС- К/2-Zn (2)  и ПДМС-К/0.8-Ni (3).

иономеры  проявляют свойства  пространственно сшитого  эластомера. На рис. 7  представлены зависимости G' и G'' от при 25С для  ПДМС-К/0.8-Ni c различным  мольным  соотношением  Ni2+  : COOH.  Видно, что с увеличением 

Рис. 7. Частотная зависимость G’ (1, 2) и G” (1’,2’) ПДМС-К/0.8-Ni c мольным соотношением  Ni2+: COOH = 0.0625 (1, 1’)  и 1.0 (2,2’).

материал переходит из вязкотекучего состояния (G'' > G')  в высокоэластическое (G' > G''),  причем,  чем больше содержание ионных групп, тем при более низкой происходит этот переход. Так, для полностью нейтрализованного образца ПДМС-К/0.8-Ni (кривые 2 и 2’) G' > G" во всей исследованной области частот, что свидетельствует о наличии в нем достаточного количества физических узлов. 

При повышении  температуры  процесс течения силоксановых  статистических иономеров сопровождается рядом эффектов, не наблюдаемых при течении карбоцепных иономеров. На рис. 8 представлены кривые течения ПДМС-К/2-Ni при различных температурах. Видно, что наблюдается четко выраженная тенденция к смещению кривых течения с ростом температуры в область более высоких значений вязкости. При всех температурах наблюдается явление дилатансии, причем чем выше температура, тем при более низких  напряжениях сдвига  начинается  рост вязкости. При температурах выше 80С в иономерах, содержащих 2 мол.% металла,  не удается добиться стационарного режима течения, вследствие непрекращающегося  роста

Рис. 8.  Кривые течения  образцов ПДМС-К/2-Ni при 25 (1), 40 (2), 60 (3) и  80оС (4).

Рис.9. Изменение во времени вязкости ПДМС-К/3-Zn (1-3) и  ПДМС - К/2-Ni (4,5)  при 90 (1), 120 (2,4) и 160оС (3,5).

вязкости во времени.  Так на рис. 9 видно, что  для Zn- содержащих иономеров при 90 и 120С (кривые 1 и 2) стационарное значение ηэф достигается за 1-2 часа.  При 160С происходит постепенный рост вязкости во времени,  продолжающейся несколько часов. При  течении Ni-содержащего иономера уже при 120С (кривая 4) не удается зафиксировать стационарное  значение вязкости..  В конце концов,  постепенный рост вязкости при 160С через 7 часов приводит к полному прекращению течения. Образовавшиеся  при 160С экструдаты, после охлаждения до комнатной температуры  сохраняют свою форму и не растекаются под собственным весом, т.е. проявляют свойства пространственно сшитых полимеров. В иономерах, содержащих меньшее количество ионных групп, роста вязкости при высоких температурах не наблюдается, а  стационарное течение достигается гораздо быстрее. 

Таким образом,  в процессе нагрева в иономерах происходит формирование прочной и термостабильной пространственной сетчатой структуры, которое более резко выражено в Ni-содержащих иономерах.

Реологические свойства растворов силоксановых иономеров.

Растворы телехелевых иономеров.

Реологические свойства растворов Li-, Zn- и Ni- ТХС изучены как в неполярном растворителе - м-ксилоле, так и в смеси  м-ксилола с полярным растворителем –

Рис.10. Изменение во времени вязкости  растворов Li-ТХС/1 (1) , Zn-ТХС/1 (2) и Ni-ТХС/1 (3) концентрации 3 об.%  в м-ксилоле. 

этанолом. Следует отметить, что, Li-, и Zn- ТХС иономеры с n=10, ограниченно  растворяются в неполярных растворителях. Ni-ТХС/8 и  Ni-ТХС/4, цепи которых состоят из  10  и  30  силоксановых звеньев,  вообще  не растворяются ни в  неполярных,  ни  в полярных растворителях. Очевидно, что в ТХС иономерах с малой длиной силоксановой цепи (большим содержанием ионных групп) неполярный растворитель действует как пластификатор. Только ТХС иономеры с достаточно длинной цепью (n=120),  могут растворяться в неполярных растворителях, независимо от типа ионов  металла.

На рис. 10 показано изменение вязкости растворов Li-, Zn- и Ni-ТХС/1 в м-ксилоле во времени. В зависимости от типа ионов металла реологическое поведение растворов резко отличается. Вязкость растворов Zn-ТХС/1 не изменяется во времени. В растворах  Ni-ТХС после приготовления растворов наблюдается снижение  вязкости. В растворе Li-ТХС/1 вязкость сразу же после растворения начинает возрастать,  и через несколько суток  образуется гель. Добавление к неполярному растворителю  м-ксилолу небольшого количества (10 об. %) полярного растворителя - этанола,  способствует неограниченному растворению ТХС с низкими Мn.

Растворы ТХС иономеров в смешанном растворителе представляют собой  неньютоновские псевдопластические жидкости. В неполярном растворителе  растворы ТХС иономеров  в определенных условиях ведут себя как дилатантные жидкости.

Растворы статистических иономеров.

Введение в ПДМС-К ионов двухвалентных металлов  приводит к способствует возрастанию межмолекулярного взаимодействия в этих иономерах, и они становятся растворимыми только в смеси полярного и неполярного растворителей. При течении растворов ПДМС-К в неполярном растворителе  при 

Рис.11. Кривые течения ПДМС-К/2-Ni (1) и его 80% (2) и 60% (3) растворов в м-ксилоле.

определенных концентрациях иономера  наблюдается  явление образованию способных к течению и растворимых материалов. Иономеры на основе ПДМС-К с низким содержанием СООН групп (0.45-1 мол. %) растворяются в неполярных растворителях. Увеличение содержания ионных групп до 2 мол.% дилатансии. В ПДМС-К/0,45-Ni иономерах дилатантное поведение  наблюдается в области концентраций  40-60% и достаточно больших напряжениях сдвига. При больших и меньших концентрациях растворы иономера проявляют псевдопластическое поведение. На рис. 11 представлены кривые течения ПДМС-К/2-Ni в блоке и в растворе. Видно, что в 60 и 80% растворах вязкость начинает возрастать при меньших напряжениях по сравнению с блочным образцом, что  свидетельствует о достаточно сильном межмолекулярном взаимодействии,  реализующемся в растворах силоксановых иономеров в неполярном растворителе. Результаты исследования иономеров в блоке также свидетельствуют о высоком уровне структурной организации происходящей в них как под воздействием температуры, так и при приложении сдвигового напряжения. Следовательно, меняя условия формирования сетчатой структуры, можно получать как термообратимые, так и термонеобратимые материалы.

Механические свойства иономеров при одноосном растяжении.

Механические свойства пленок силоксановых иономеров были исследованы только на примере иономеров с боковыми ионными группами. ТХС иономеры не образуют пленок.  Исследовали растяжение пленок трех типов: полученных из раствора, прессованием при комнатной и при повышенной температурах. Различный способ получения пленок предполагал возможность реализации в них узлов разного типа. 

На рис. 12 приведены кривые растяжения цинк- и никельсодержащих пленок,  сформированных при комнатной температуре. Видно,  что способ

Рис. 12. Кривые  растяжения пленок ПДМС-К/2-Ni (1,2) и ПДМС-К/2-Zn (3,4), полученных из раствора (1,3) и прессованием (2,4).

Рис. 13.  Кривые  растяжения пленок ПДМС-К/2-Zn,  полученных прессованием при 25 (1), 140 (2) и 180ОС (3) и испытанных при 25 ОС.

получения пленок особенно сильно влияет на их механические свойства в случае цинксодержащего иономера. Кривая растяжения ПДМС-К/2-Zn,  полученного прессованием  (кривая 4),  характеризуется  наличием протяженного, практически горизонтального участка, отвечающего развитию необратимой пластической деформации. Это означает, что в пленках, полученных прессованием иономеров при комнатной температуре стабильные межмолекулярные узлы почти не образуются. Напротив, формирование пленок из раствора (кривые 1 и 3) способствует образованию определенного числа стабильных узлов. Это проявляется в развитии уже больших обратимых деформаций, увеличении разрывного напряжения и уменьшении разрывной деформации. Отметим также, что при любом способе получения разрывная деформация цинксодержащих полимеров всегда больше, чем никельсодержащих.

Существенное влияние на механические свойства пленок оказывает температура,  при которой происходило формирование образцов. На рис.13 представлены кривые растяжения пленок ПДМС-К/2-Zn,  полученных прессованием при различных температурах. Видно, что увеличение температуры прессования способствует возрастанию разрывного напряжения и уменьшению разрывной деформации.

Структурные аспекты.

Реологические и механические свойства силоксановых иономеров указывают на различный характер и уровень структурирования этих систем, который, по-видимому, можно отнести к существованию в них различных внутри- и межмолекулярных связей, способных к реорганизации с изменением температуры.

В принципе в силоксановых иономерах с разной степенью нейтрализации могут существовать следующие типы связей и взаимодействий: ионные (солевые) связи СОО – Мt, электростатическое притяжение ионных пар, координационные связи между карбоксильными группами и атомами металлов, координационные связи между кислородом силоксановой цепи и ионами металла, водородные связи между свободными группами СООН.

При взаимодействии ПДМС-К с солями двухвалентных металлов образующиеся солевые связи являются преимущественно внутри-, а не межмолекулярными, о чем свидетельствуют способность к течению, растворимость и низкие значения характеристической вязкости  иономеров. Следовательно, значительное отличие реологических и механических свойств силоксановых иономеров и ПДМС-К, не подвергнутых термической обработке, связано с наличием указанных выше более сильных межмолекулярных взаимодействий, чем водородные связи в ПДМС-К. Наиболее важными из них являются электростатические взаимодействия между ионными парами, которые приводят к их агрегации в мультиплеты, играющими роль физических узлов.

Изменение температуры приводит к диссоциации и реорганизации как меж-, так и внутримолекулярных связей. Образование необратимой сетки при более высоких температурах связано с перегруппировкой внутримолекулярных солевых и координационных связей в межмолекулярные, аналогично тому, как это происходит при перегруппировке водородных связей в ПДМС-К.  Движущей силой процесса является энтропийный фактор – стремление системы к статистической реорганизации системы связей. Однако в силу большей стабильности солевых связей, чем водородных, эта реорганизация происходит при более высоких температурах. 

Таким образом, необратимые сетки, полученные при нагревании иономеров при 180°С, содер­жат узлы различного типа: узлы, образованные солевыми и координационными связями, а также физические узлы, представляющие собой мультиплеты ионных пар. Нами была сделана попытка оценить  относительный вклад физических и химических попе­речных связей в модуль упругости таких необра­тимых иономерных сеток. С этой целью были измерены набухание и равновесный модуль упру­гости иономеров в толуоле, смесях толуола с этанолом, в этаноле и в пиридине. Определив равно­весный модуль упругости и объемную долю полимера в равновесно набухшем геле, была  рас­считана  молекулярная  масса отрезка цепи между узлами сетки Мс из уравнения статисти­ческой теории высокоэластичности. Результаты этого расчета представлены в таб­лице. Можно видеть, что Мс сетки без раствори­теля и в толуоле одинаковы. Это указывает на то, что неполярный растворитель не влияет на коли­чество эластически активных цепей и что все уз­лы, существующие в сетке, сохраняются в его присутствии. Добавление к толуолу этанола (по­лярный растворитель), который способен вызы­вать диссоциацию агрегатов ионных пар, приво­дит к исчезновению таких физических узлов. В присутствии этанола остаются только узлы, образованные ионными (солевыми) и координа­ционными связями, которые и определяют вели­чину модуля упругости сетки. Количество коор­динационно связанных узлов было установлено при исследовании набухания  образца иономера в смеси  толуола  с пиридином, молекулы которого способны образовывать координационные связи с атомами переходных металлов за счет имею­щейся неподеленной пары электронов на атоме азота. Как видно из таблицы, в отсутствие рас­творителя Мс в иономере в ~2 раза больше моле­кулярной массы Ме отрезка цепи между группами СООН исходного ПДКС. Это указывает на то, что каждая вторая ионная группа входит в узлы сетки, в то время как в образовании химических поперечных связей участвует примерно только каждая четвертая.

Наличие в необратимой сетке соле­вых межмолекулярных связей подтверждается следующим фактом: при нагревании (160°С) в присутствии карбоксилсодержащего олигомера с одной концевой карбоксильной  группой

(НООС-СН2-СН2-Si(CH3)2-O[-Si(CH3)2-O]n-Si(CH3)3 (n = 6 - 8), происходит перераспределение солевых связей  вследствие переацидирования и блокировки ионных групп, и сшитый полимер растворяется.

Таблица.

Параметры сухой и набухшей сетки ПДМС-К/2-Ni, нагретого до 180С.

Растворитель

G, кПа

V2

Мс10-3

Mc/Me*

Без растворителя

420

1.00

5.8

2.1

Толуол

270

0.28

5.8

2.1

Толуол/этанол = 90/10

209

0.25

7.3

2.7

Толуол/этанол = 50/50

240

0.52

8.1

3.0

Этанол

240

1.00

10.0

3.7

Толуол/пиридин =90/10

92

0.24

16.2

6.0

Исследование силоксанкарбоксилатных ио­номеров показало, что в основе их структурообразования могут лежать различные процессы. Во-первых,  это характерная для всех иономеров агрегация ионных пар в мультиплеты, результатом которой является образование физической сетки. Во-вторых, индуцированное напряжением и температурой образование сетчатой структуры, за счет  реорганизации внутримолекулярных ионных, солевых и координационных связей в межмолекулярные.  Реорганизация внутримолекулярных специфических взаимодействий в межмолекулярные происходит в карбоксилсодержащих иономерах в отличие от иономеров с основной углеводородной цепью не только в растворе, но и в блоке. Такое поведение  обусловлено высокой гибкостью полимерной цепи и небольшим количеством ионных групп и, в принципе, оно должно наблюдаться и в других гибкоцепных иономерах.

Очевидно, что изучение реологии таких материалов представляет особый интерес с точки зрения взаимного влияния процессов течения и структурообразования.

Глава 5

  Реологические свойства мезоморфных органосилоксанов.

  Макромолекула полидиметилсилоксана является наиболее гибкой среди линейных полиорганосилоксанов с другими боковыми заместителями.  С увеличением алкильного радикала в боковом  обрамлении  жесткость цепи возрастает, однако макромолекулы полидиэтилсилоксана и полидипропилсилоксана все еще сохраняют высокую гибкость.  Высокая гибкость силоксановой цепи и межмолекулярное «специфическое» взаимодействие алкильных боковых групп приводят к особому виду самоорганизации этих макромолекул. Было установлено, что ПДЭС, ПДПС, а также линейные полиорганосилоксаны c более длинными алкильными группами способны образовывать термотропные упорядоченные фазы. В принципе, реализация специфического взаимодействия боковых групп является одной из возможностей увеличения межмолекулярного взаимодействия в полиорганосилоксанах и придания им специфических деформационных свойств. В этом аспекте реологические свойства силоксановых полимеров в мезоморфном состоянии представляли особый интерес, однако они к началу выполнения данной диссертационной работы оставались практически не исследованными. 

Отсутствовали также данные о реологических свойствах низкомолекулярных силоксанов, способных образовывать различные виды мезофаз. К ним относятся, в частности, органоциклосилоксаны, которые могут формировать,  как конформационно-разупорядоченную 2D-мезофазу, так и ориентационно-разупорядоченную 3D-мезофазу. Исследование таких низкомолекулярных соединений представляется  целесообразным  как с точки зрения моделирования структуры и свойств высокомолекулярных мезоморфных органосилоксанов, так и для создания на их основе материалов со специфическими механическими и реологическими свойствами.

Реологические свойства силоксанов, образующих колончатую мезофазу.

В качестве объектов для исследования  реологических свойств линейных силоксановых полимеров, образующих колончатые мезофазы были выбраны полидиэтилсилоксан (ПДЭС), и сополимер  полигексилфенилсилоксана (ПГФС) (мольное соотношение фенильных и гексильных групп 5:1)*. Реологические характеристики ПГФС были определены в температурной области, соответствующей существованию его в мезоморфном состоянии. В случае ПДЭС испытания проводили  в интервале температур  10-100°С,  который охватывал как его мезоморфное,  так  кристаллическое и  изотропное состояния. Течение обоих

полимеров в мезофазе становится возможным при напряжениях сдвига τt превышающих  их предел текучести τtпр. Как видно  из рис. 14  кривые  течения ПГФС представляют собой прямые с одинаковым наклоном. Индекс течения во всем температурном интервале сохраняется постоянным и равным ~ 0,25.

Кривые течения ПДЭС (рис.15), в зависимости  от его фазового состояния имеют различный наклон, что свидетельствует об изменении механизма течения.

_____________________________________________

Образец предоставлен к.х.н. Л.М.Тартаковской

Рис. 14. Кривые течения ПГФС (4,5) при температурах: 1- 25,  2 – 56, 3- 95, 4- 152 , 5- 200 и 6 - 2500С.

Рис. 15. Кривые течения ПДЭС при  температурах  1- 100С, 2- 100С, 3- 370С, 4- 550С.

При этом индекс течения меняется от 0.12 в кристаллическом до 0.25 в мезоморфном и до 0.8 в  состоянии изотропного расплава. Наиболее значительное  изменение реологического поведения ПДЭС наблюдается  в температурной области перехода из мезоморфного состояния в изотропный расплав. 

Для полимеров, находящихся в вязкотекучем состоянии,  характерно увеличение  диаметра струи выходящей из капилляра (dэ), по сравнению с размерами выходного сечения капилляра (dк). Количественной характеристикой этого эффекта является отношение α = dэ /dк, называемое коэффициентом раздутия. На рис. 16а  показана зависимость α от температуры для ПДЭС.

Рис. 16. Температурные зависимости коэффициента раздутия (а)  при Dr = 0.1 сек-1, равновесной податливости (б) и вязкости  (в)  ПДЭС.

Видно, что при капиллярном течении ПДЭС, находящегося в мезофазе (температурный интервал 20-30°С), α  даже меньше 1, т.е. происходит сжатие экструдата. В  температурном интервале 30-40°С начинается постепенное плавление мезофазы и α при 40°С становится больше 1. Наиболее сильно α изменяется в области температур, предшествующих окончательному плавлению мезофазы (40-50°С). После перехода ПДЭС в изоторопный расплав величина α незначительно изменяется с температурой. На рис. 16б показано изменение упругой податливости от температуры. Видно, что зависимости α - Т и  Iупр - Т очень похожи. При деформировании ПДЭС, находящегося в мезофазе,  не происходит развития высокоэластической деформации, на что указывает отсутствие разбухания экструдата, а упругая составляющая общей деформации связана с обратимой  упругостью. С повышением температуры Iупр возрастает, достигая максимума при температурах соответствующих переходной области мезофаза→изотропный расплав.  После полной изотропизации ПДЭС, происходящей при температуре 55°С,  величина  Iупр уменьшается, а при температурах выше  60°С она  практически постоянна. При переходе ПДЭС из мезофазы в изотропный расплав наиболее резкое падение вязкости, как видно из рис. 16 в, также происходит в температурном интервале от 30 до 50°С.  Таким образом,  при переходе ПДЭС из мезоморфного состояния в изотропное происходит уменьшение вязкости, рост высокоэластичности и снижение предела текучести. Фактически при увеличении температуры происходит изменение характера реологического поведения ПДЭС.  При температурах от 10 до 30°С материал проявляет свойства пластического тела.  При дальнейшем повышении температуры происходит постепенный переход  к реологическому поведению характерному для высокоэластических материалов.

Таким образом, мезофазы исследованных линейных полиорганосилоксанов, рассматриваемые как частично разупорядоченные 2D-кристаллы, являются вязкопластичными телами. Пластическое течение этих мезофаз при сдвиговых напряжениях выше предела текучести  может быть описано в рамках традиционного реологического  подхода к вязкому течению расплавов полимеров.

Реологические свойства  мезоморфных органоциклосилоксанов.

До начала наших исследований был известен только один циклоорганосилоксан, не содержащий мезогенных групп и способный образовывать 3D-мезофазу, а именно октафенилциклотетрасилоксан (ОФЦТС).

Впервые синтезированные в ИНЭОС РАН  стереорегулярные органоциклосилоксаны образуют  мезофазу пластического кристалла в широком температурном интервале от 25 до 250°С. Такой протяженный температурный интервал существования мезофазы делает эти соединения удобными модельными объектами для наиболее полной характеристики особенностей реологического поведения пластических кристаллов и исследования структурных изменений, происходящих как в процессе течения, так и после перехода материала из пластической мезофазы в кристаллическое состояние.

Реологические свойства пластических кристаллов циклотетрасилоксанов.

Октафенилциклотетрасилоксан: (III)  и цистетрафенилтриорганил - силоксициклотетрасилоксаны (IV) (ОЦТС)  общей формулы:

III  IV

         

               

где R= SiMe3 (ЦТС-Ме3), Si(Me)2 CH2Cl (ЦТС- CH2Cl), Si(Me)2CH=CH2 (ЦТС-Vi) составляют группу соединений, не содержащих мезогенных групп, но способных образовывать мезофазу 3D-типа, то есть представляющих собой пластические кристаллы*. 

*Образцы циклоорганосилоксанов для исследования реологические свойств были предоставлены к.х.н. О.И. Щеголихиной. Рентгеноструктурный  анализ  органоциклосилоксанов был проведен сотрудниками МПГУ  к. ф.- м. н. Е.В. Матухиной и Е.Г. Беленовой.

Рис.17. Кривые течения ОФЦТС при температурах:1 -188; 2, 2’- 193; 3- 196оC. Кривые 2 и 2′ получены при начальном τ = 5.1 и 12.6 кПа соответственно.

Ряд тетрамеров можно рассматривать как триорганилсилокси производные ОФЦТС, проявляющего свойства пластического кристалла в узком интервале температур.  Течение ОЦТС,  также как и мезоморфных  полиорганосилоксанов становится возможным после  достижения предела текучести.  На рис.  17  приведены  кривые течения  ОФЦТС при различных температурах. Все кривые имеют схожий вид и характеризуются двумя четко выраженными  участками с разным наклоном. При низких напряжениях сдвига, установившийся режим течения достигается крайне медленно и сопровождается постепенным замедлением скорости деформации. Образующийся экструдат, в зависимости от величины τ, имеет различную морфологию, представляя собой либо монокристалл, либо ориентированную поликристаллическую структуру. Величина τ определяет морфологию получаемых структур: влияет на ориентацию кристаллов относительно оси экструдатов, а также их размер. Кроме того, совершенство получаемых монокристаллов существенно зависит от величины приложенного напряжения.  При низких  τ  (область  ОА  на кривых  течения 1 и 2, рис.17) экструдат, после охлаждения до комнатной температуры состоит из моноклинных или триклинных (в зависимости от температуры  и  термической предыстории) монокристаллов (рис.18а). Размеры монокристаллов соизмеримы с  размерами  капилляра  и  имеют тенденцию  к  уменьшению  при увеличении τ в пределах области ОА на рис. 17. При увеличении τ в пределах области АБ (рис. 17) экструдаты становятся все менее прозрачными. При этом  их морфология также претерпевает изменения (рис.18б): это ориентированные поликристаллические системы, у которых размер кристаллитов λ превышает1000 . При использовании еще больших  напряжений τ (область БВ на рис. 17) образуются мутные экструдаты с ориентированной поликристаллической структурой и λ < 1000 (рис.18в). Размеры кристаллитов уменьшаются, сохраняя при этом преимущественную ориентацию вдоль оси экструдатов. При исследовании течения  ОФЦТС  обнаружено,  что  скорость  деформации  зависит  не  только от

Рис. 18. Фоторентгенограммы экструдатов ОФЦТС, полученных  при постоянной Тэ= 188оС и различных напряжениях сдвига: τ =  10  кПа (а); τ = 20 кПа (б);  τ =  60  кПа (в).

величины τ, но и от последовательности нагружения. На рис. 17 изображены кривые течения ОФЦТС при 193°С в зависимости от последовательности приложения нагрузки. В случае, когда деформирование начинается с малых величин напряжения (кривая 2), кривая течения содержит два линейных участка с различными наклонами. Если деформирование начать с больших напряжений (кривая 2’), остается только один линейный участок, при этом меняется и индекс течения. Такая неоднозначность зависимости между напряжением и вязкопластичными деформациями является типичной для пластических материалов, у которых значения напряжений зависят не от текущих (мгновенных) значений, а от того, в какой последовательности шло их изменение до достижения текущих значений, т.е. от процесса деформации.

С целью установления, в какой мере пластический кристалл "помнит" свою кристаллическую предысторию после перехода «кристалл→мезофаза» было изучено реологическое поведение циклотетрасилоксана ЦТС-Ме3 в мезоморфном состоянии в зависимости от условий формирования кристаллической структуры, влияющей на степень дефектности кристаллов. Для решения этой задачи нами были получены три образца ЦТС-Ме3, отличающиеся условиями кристаллизации: первый образец  был получен быстрой кристаллизацей  из насыщенного раствора в этаноле, второй медленно выкристаллизовывался из разбавленного спиртового раствора, а третий – получен сублимацией в вакууме. Различная степень дефектности кристаллической фазы полученных образцов ЦТС-Ме3 была подтверждена данными ДСК и РСА.

Рис. 19. Температурная зависимость τкр образцов ЦТС-Ме3 полученных путем сублимации –1, быстрой – 2 и медленной  - 3 кристаллизацией из этанола.

На рис.19 представлены температурные  зависимости τпр. Видно, что наибольшую величину τкр имеет образец, полученный в результате медленной кристаллизации, а сублимированный – наименьшую. Все эти факты косвенно свидетельствуют о следующем. Каждому из образцов ЦТС-Ме3 присущи особенности  течения в мезоморфном состоянии, связанные в  основном с морфологией  образца,  формирующейся  при  кристаллизации.  Предыстория формирования кристаллической структуры образцов ЦТС-Ме3 оказывает значительное влияние на их реологические свойства в мезофазе (предел текучести, вязкость, энергию активации течения). Медленная кристаллизация способствует формированию менее дефектной кристаллической структуры, остающейся таковой и после термотропного перехода в ориентационно разупорядоченное мезоморфное

состояние. Используя различные  приемы кристаллизации  можно целенаправленно  влиять на реологические свойства материала в пластическо - кристаллическом состоянии и на морфологию экструдата, получаемого после охлаждения от температуры экструзии (Тэ).

Больший объем триорганилсилокси-групп по сравнению с фенильными группами в ОФЦТС приводит не только к расширению области существования мезофазы (78 – 262°С для  ЦТС- Ме3),  но и к  различному  характеру  зависимости  между приложенным напряжением сдвига и скоростью деформации. На рис.20а представлены кривые течения ЦТС-Ме3.  В отличие от ОФЦТС на этих кривых нельзя выделить два четко выраженных участка с различным наклоном. После охлаждения до комнатной температуры экструдаты еще некоторое время остаются прозрачными, находясь в  мезоморфном состоянии. Через несколько минут экструдаты  кристаллизуются и мутнеют. Для экструдатов ЦТС-Ме3 характерна ориентированная поликристаллическая структура, причем степень ориентации и размер кристаллитов существенно зависят от условий экструзии. Наибольший размер  кристаллитов  (более  1000 ) наблюдается  у  образцов при Тэ = 150°С.  При увеличении Тэ до 200°С размеры кристаллитов существенно уменьшаются; при этом направление их преимущественной ориентировки сохраняется. В процессе экструзии ЦТС-Ме3 в ряде случаев удается сформировать монокристаллический экструдат. Для этого необходимо соблюсти ряд условий, способствующих течению пластического кристалла с малой скоростью при большом напряжении сдвига.

Кривые течения ЦТС- Vi (температурная область существования мезофазы при нагревании 31–273°С), как следует из рис. 20б, в основном имеют S-образную форму и лишь при 150°С на кривой течения можно выделить два участка  с различным наклоном. Процесс  кристаллизации ЦТС- Vi  после экструзии при температурах выше 25°С протекает крайне медленно, и образец в течение длительного времени сохраняет ориентированную мезоморфную структуру. Наиболее крупные домены (более 1000 )  образуются  при более низких

Рис. 20. Кривые течения ОЦТС при различных  температурах: а – ЦТС-Ме3: 1–80, 2–150, 3–185, 4–200С; б–ЦТС- Vi: 1–25, 2– 80, 3–150, 4–200С; в – ЦТС-CH2Cl: 1–60, 2–100, 3–150, 4–200С.

температурах экструзии.  При  малых напряжениях в ряде случаев происходит формирование монодоменов, размеры которых сравнимы с диаметром капилляра. Их кристаллизация приводит к образованию монокристалла.

Кривые течения соединения ЦТС-CH2Cl (температурная область существования мезофазы при нагревании 45–260°С) в зависимости от температуры имеют различный характер (рис. 20в). При температурах 60°С и 100С зависимости lgτ – lgDr (кривые 1 и 2) представляют собой прямые и n = 0,44. С повышением температуры характер зависимости перестает быть линейным, и при 200С кривая течения по форме аналогична кривым течения ОФЦТС (см. рис.17). В экструдатах ЦТС-CH2Cl при комнатной температуре процесс формирования кристаллической структуры происходит длительно во времени (от нескольких часов до нескольких суток) в зависимости от условий эксперимента. В процессе экструзии формируются ориентированные мезоморфные образцы, в которых через несколько суток образуется либо ориентированная поликристаллическая структура, либо монокристалл.

Таким образом,  проведенное исследование пластических кристаллов стереорегулярных циклотетрасилоксанов, отличающихся как строением бокового обрамления, так и размером цикла позволило установить  основные закономерности их течения, которые в принципе можно  распространить на все пластические кристаллы.  Во всем исследованном диапазоне напряжений сдвига пластические кристаллы циклотетрасилоксанов ведут себя как  нелинейная вязкопластичная среда. Большое влияние на реологическое поведение  ОЦТС в мезофазе и их морфологию в кристаллическом состоянии оказывает предыстория формирования кристаллической структуры. Изменяя последовательность приложения сдвигового напряжения  можно регулировать не только морфологию, но и  кристаллическую структуру  ОЦТС.  Отличительной особенностью этого класса соединений является возможность формировать  путем экструзии пластических кристаллов циклотетрасилоксанов монокристаллы.

Реологические свойства смесей циклотетрасилоксанов.

Рис.21. Диаграмма состояния, смесей ОФЦТС / ЦТС- Me3..

Были  исследованы  два типа смесей. Первый тип,  представляет собой смесь ОФЦТС и ЦТС- Me3. ОФЦТС и ЦТС-Me3 имеют различную кристаллическую структуру и архитектуру молекул.  В то же время в 3D-мезофазе они имеют одинаковый тип молекулярной упаковки – объемноцентрированную кубическую (ОЦК) ячейку,  но параметры ОЦК-ячеек существенно отличаютсяКомпоненты второй смеси, а именно, ЦТС- Me3 и ЦТС-Vi,  являются  изоморфными в кристаллической фазе и мезофазе, а при смешении могут образовывать непрерывные твердые растворы во всем диапазоне концентраций. На основании ДСК, РСА  и поляризационной микроскопии были построены диаграммы состояния смесей*. На диаграмме состояния смеси ОФЦТС/ ЦТС-Me3 (рис. 21) можно выделить следующие области:  область сосуществования кристаллов

ОФЦТС и ЦТС- Me3, область, содержащую кристаллы ОФЦТС и мезофазу ЦТС-Me3, совместную мезофазу и область изотропного расплава.

На рис. 22 представлены кривые течения  смеси при различных температурах. Кривые 1-3  соответствуют течению дисперсной системы:  представляющей  собой  мезофазу  ЦТС-Me3  в которой  содержатся кристаллы ОФЦТС, а кривые 4-6 соответствуют течению совместной мезофазы. Видно, что кривые течения при всех температурах имеют аналогичный вид, а индекс  течения

Рис. 22. Кривые течения смеси ЦТС-Мe3  /ОФЦТС =75/25 при: 100 (1), 125 (2), 150 (3), 175 (4), 200 (5) и 225оС.

Рис.23. Кривые течения ОФЦТС (1), 

ЦТС-Me3  (3) и их смеси ЦТС-Me3 / ОФЦТС = 75/25 при 200оС.

практически  не зависит  от  фазового состояния смеси и изменяется от 0.2 в случае течения совместной мезофазы до 0.28 при течении дисперсной системы. Вероятно, что  при небольшом  содержании кристаллов ОФЦТС  процесс течения смеси  в основном связан с  вязкостью мезоморфного компонента. Совместная мезофаза формируется во всем диапазоне составов смесей, хотя при высоком _____________________________________________________

*Калориметрические измерения выполнены к.х.н. М.И. Бузиным

содержании ОФЦТС она существует в узкой температурной области. На рис. 23 представлены кривые течения ОФЦТС, ЦТС-Me3 и их смеси. Видно, что кривая течения смеси, являющейся  совместной мезофазой, располагается между кривыми течения индивидуальных соединений. Данные РСА экструдатов смеси ЦТС-Me3/ОФЦТС свидетельствуют о наличии в них  ориентированной поликристаллической структуры. Степень ориентации смесей (также как и индивидуальных ОЦТС) в значительной степени определяется величиной напряжения сдвига, при котором происходило пластическое течение.

Увеличение содержания в смеси ОФЦТС, представляющего собой при температуре эксперимента кристаллическую фазу, приводит к существенному замедлению скорости сдвига. Особенно заметно этот эффект проявляется при высоком содержании ОФЦТС. Для смеси, содержащей 90 мол.% ОФЦТСпроцесс течения в капилляре не удалось реализовать, вследствие высокого предела текучести. При течении смеси, содержащей кристаллическую фазу,  высокая дефектность приводит к потере ориентировки.

Диаграмма состояния смеси  ЦТС-Me3 / ЦТС-Vi  представлена  на рис. 24.

Рис. 24. Диаграмма состояния для смесей ЦТС- Me3 / ЦТС-Vi .

.

Видно, что эта смесь при любых соотношениях компонентов и при всех температурах образует непрерывный твердый раствор. Кривые течения для смесей представлены на рис. 25.  При их рассмотрении обращает на себя внимание  особый  характер  кривых  при  200°С.  Аналогичный  характер кривых течения наблюдается также и для ОФЦТС и ЦТС-CH2Cl при 200°С

Влияние соотношения компонентов на характер течения продемонстрировано на рис. 25, на котором  показаны кривые течения ЦТС- Me3, ЦТС-Vi и их смесей при двух температурах. На рисунке видно четкое разделение

Рис. 25. Кривые течения при 80 (а) и 200оС (б) ЦТС-Me3 (1),  ЦТС-Vi (2) и смесей  ЦТС-Me3 / ЦТС-Vi в соотношении: 25/75 (3), 50/50 (4) и 75/25 (5). 

кривых течения на две группы, соответствующим  различным  температурам,  в  то  время  как  при изменении соотношения компонентов  различия в кривых течения

практически нет. При течении этих смесей, и последующем  охлаждении экструдата формируется ориентированная совместная мезофаза, которая  кристаллизуясь при комнатной температуре преобразуется в ориентированную поликристаллическую структуру.  Возможно также и образование  совместного монокристалла.

Таким образом,  реологические свойства индивидуальных  ОЦТС и их  смесей, находящихся в пластической мезофазе в основном подобны. Это связано с

тем, что в 3D-мезофазе компоненты смеси имеют одинаковый тип молекулярной упаковки – объемноцентрированную кубическую ячейку. Для смесей ЦТС- Me3 / ЦТС-Vi различного состава, компоненты которых являются  изоморфными в кристаллической фазе и мезофазе, обнаружено  индуцированное напряжением образование совместного  монокристалла.  Весьма интересной  является  возможность регулирования температуры фазового перехода кристалл-мезофаза за счет изменения состава смеси.

Реологические свойства органоциклогексасилоксанов.

где R= SiMe3 (ЦГС-Ме3), Si(Me)2 CH2Cl (ЦГС-CH2Cl), Si(Me)2CH=CH2 (ЦГС-Vi).

По сравнению с тетрамерами температурная область существования мезофазы в органоциклогексасилоксанах еще больше расширяется, что связано с увеличением размера цикла.  Для  гексамера, содержащего в цис- положении триметилсилокси группы (ЦГС-Ме3) фазовый переход кристалл→низкотемпературная мезофаза (НТ-мезофаза) происходит при 55°С. При 174°С наблюдается второй  фазовый переход из одной мезоморфной модификации в другую. Молекулярная структура в  НТ-мезофазе характеризуется двумерным порядком (2D) с гексагональной упаковкой. По данным РСА и поляризационной микроскопии НТ-мезофаза является колончатой, вероятно Colhd типа. Высокотемпературная (ВТ) мезофаза представляет собой пластический кристалл, а молекулы формируют  гранецентрированную кубическую  решетку.

Формирование сферическими  молекулами, колончатой мезофазы для других соединений ранее не наблюдалось.  Следует  отметить,  что  течение  ЦГС- Ме3,  так  же  как и ОЦТС начинается после достижения предела текучести.  В

Рис.26. Кривые течения ЦГС-Ме3 при температурах: 1 – 110 , 2-150, 3-180, 4-220,  5-265оС.

интервале температур от 100 до 180°С, когда материал находится в НТ мезофазе, наблюдается резкое падение τкр. После 180°С, для  материала находящегося  в  ВТ мезофазе, предел текучести  практически не зависит от температуры. 

На рис. 26  представлены кривые  течения  ЦГС-Ме3 в  температурном

интервале охватывающем НТ- и ВТ- мезофазу.  Как видно почти все зависимости  lg τ– lg Dr представляют собой прямые, за исключением кривой течения соответствующей температуре  180°С.  Характер кривых течения  в  НТ и  ВТ мезофазах практически одинаков, а основное отличие характера течения связано с переходной областью, когда подвижность молекул значительно возрастает. Все экструдаты  после охлаждения имеют ориентированную поликристаллическую структуру.  Необычное реологическое поведение  ЦГС-Ме3,  проявляющееся в специфическом характере течения при 180°С, связано с проявлением полимезоморфизма. Согласно результатам рентгеноструктурного анализа,  характерной особенностью молекулярного упорядочения в кристалле ЦГС-Ме3 является четкое разделение между фенильными и триметилсилокси боковыми группами. Такая агрегация обусловлена  биполярной природой молекул ЦГС-Ме3 . Переход кристалл – НТ мезофаза связан с увеличением подвижности  триметилсилокси групп. Более сильные взаимодействия между фенильными  группами сохраняются вплоть до температуры 160-180°С. Вследствие этого в НТ-мезофазе процесс течения связан с перемещением в сдвиговом поле доменов за счет ослабления межмолекулярных связей между триметилсилокси группами.

Таким образом,  на примере  серии стереорегулярных циклотетрасилоксанов, отличающихся как строением бокового обрамления, так и размером цикла впервые установлены основные закономерности вязкого течения пластических кристаллов.  Во всем исследованном диапазоне напряжений сдвига пластические кристаллы циклотетрасилоксанов ведут себя как  нелинейная вязкопластичная среда. Большое влияние на реологическое поведение  ОЦТС в мезофазе и их морфологию в кристаллическом состоянии оказывает предыстория формирования кристаллической структуры. Изменяя последовательность приложения сдвигового напряжения  можно регулировать не только морфологию, но и  кристаллическую структуру  ОЦТС.  Возможность формировать  монокристаллы путем экструзии пластических кристаллов циклотетрасилоксанов является отличительной особенностью этого класса соединений.

Выводы

1.  Выявлены и обобщены основные закономерности течения и характер структурообразования в низкомолекулярных и высокомолекулярных силоксанах с различным  уровнем межмолекулярного взаимодействия. Установлены закономерности течения и структурообразования в низкомолекулярных и высокомолекулярных силоксанах,  имеющих различный уровень межмолекулярного взаимодействия. Показано влияние специфических взаимодействий на реологические свойства и  формирование структуры в силоксанах.

2. Изучен процесс образования обратимой физической сетки в карбоксилсодержащих полидиметилсилоксанах, происходящий при повышении температуры. Определены  четыре температурных интервала, обусловливающих различную степень структурной организации в карбоксилсодержащих полидиметилсилоксанах.  Разработан способ получения обратимых силоксановых сеток с регулируемыми свойствами и временем жизни.

3. Проведено комплексное исследование реологических и механических свойств силоксановых иономеров, определен вклад межмолекулярных связей различного типа в образование обратимой сетчатой структуры. Показано влияние режима деформирования на формирование ориентированной структуры в иономерах и установлены общие принципы формирования термоэластопластов на основе силоксановых иономеров. Впервые проведено сопоставление реологических свойств телехелевых и статистических иономеров с одинаковой основной цепью.

4. Показано, что образование сетчатой структуры в силоксановых карбоксилсодержащих полимерах и иономерах в значительной степени определяется перераспределением внутримолекулярных связей различной природы в межмолекулярные при повышенных температурах.

5. На примере ПДЭС прослежен характер изменения реологических свойств в различных фазовых состояниях - кристаллическом, мезоморфном и изотропном. Показано, что характер реологического поведения силоксанов представляющих собою кондис - кристаллы  имеет ряд общих черт с реологическими свойствами других полимеров, находящимися в аналогичном фазовом состоянии. Впервые исследован процесс течения полигексилфенилсилоксана и полидиэтилсилоксана, находящихся в  колончатой мезофазе. Установлено, что пластическое течение  колончатых мезофаз может быть описано в рамках традиционного реологического  подхода к вязкому течению расплавов полимеров.

6.  Изучены  основные закономерности вязкого течения циклосилоксанов, как с различными триорганилсилокси группами,  так и размером цикла. Больший объем триорганилсилокси групп по сравнению с фенильными группами в ОФЦТС приводит не только к расширению температурной области существования мезофазы, но и к различному характеру зависимости между приложенным напряжением сдвига и скоростью деформации.

7. Впервые установлены основные закономерности вязкого течения пластических кристаллов на примере  целой серии стереорегулярных ЦС, отличающихся как строением бокового обрамления, так и размером цикла. Показано влияние условий деформирования в пластической мезофазе на тип кристаллической структуры. Установлено, что предыстория формирования кристаллической структуры влияет на реологическое поведение  пластических кристаллов.  Изучены реологические свойства органоциклосилоксанов с различным размером цикла.  На примере циклогексасилоксанов изучен механизм течения  пластических мезофаз 2D и 3D типа. Исследованы особенности реологического поведения этого материала в различных мезофазах, а также в переходной области из одной мезофазы в другую.

8. Развит новый способ получения монокристаллов больших размеров, заключающийся в кристаллизации экструдата, образовавшегося в процессе капиллярного течения материала, находящегося в пластической мезофазе. Новый способ получения монокристаллов путем экструзии позволяет формировать, в зависимости от геометрии капилляра монокристалл любой формы.

9. Исследование реологических свойств силоксанов различных классов  позволило  установить специфику их поведения в процессе  деформирования, выяснить  влияние механического поля на формирование структуры,  а также управлять процессом структурообразования этих материалов с целью получения материалов с необходимыми физико-механическими характеристиками.

ОСНОВНЫЕ ПУБЛИКАЦИИ АВТОРА ПО ТЕМЕ ДИССЕРТАЦИИ

  1. Щеголихина О.И., Васильев В.Г., Роговина Л.З.,  Левин В.Ю., Жданов А.А., Слонимский Г.Л. Особенности структурообразования в карбоксилсодержащих полидиметилкарбосилоксанах. Высокомол. соед., А. 1991. Т. 33. №11.  С. 2370.
  2. Rogovina L.Z., Shchegolikhina O.I., Vasiliev V.G., Levin V.Yu., Zhdanov A.A. The reversible network formation in poly(dimethylsiloxanes) with carboxyl groups. 10 Polymer Networks group meeting and IUPAC 10th international symposium on polymer networks. Abstracts. Ierusalem. 1990. P. P-15.
  3. Роговина Л.З., Васильев В.Г., О.И.Щеголихина, Левин В.Ю. Особенности  структурообразования в карбоксилсодержащих олидиметилкарбоксисилоксанах. Тезисы докладов VII Всесоюзной конференции по химии, технологии производства и практическому применению кремнийорганических соединений. Тбилиси. 1990. С. 351.
  4. Васильев В.Г., Роговина Л.З., Слонимский Г.Л. Применение метода электрострикции для исследования релаксационных процессов на примере  кремнийорганических олигомеров и гелей. Высокомол. соед., А. 1991. Т.33. №11. С. 2363.
  5. Rogovina L.Z., Shchegolikhina O.I., Vasiliev V.G., Levin V.Yu., Zhdanov A.A. The reversible network formation in poly(dimethylsiloxanes) with side carboxyl groups. Makromol.Chem., Macromol.Symp. 1991.  V. 45.  P. 53. 
  6. Васильев В.Г., Щеголихина О.И., Роговина Л.З.,  Жданов А.А. Вязкие и вязкоупругие свойства силоксановых иономеров. Тезисы докладов XVI симпозиума Реология -92. Днепропетровск. Пороги. 1992. C. 79.
  7. Щеголихина О.И., Васильев В.Г., Роговина Л.З.,  Жданов А.А., Роланд А. Особенности образования термообратимых сеток на основе карбоксилсодержащих полидиметилкарбосилоксанов. Тезисы докладов XVI симпозиума Реология –92. Днепропетровск. Пороги, 1992. С. 166.
  8. Rogovina L.Z., Vasiliev V.G., Shchegolikhina O.I., Zhdanov A.A. Networks formed by interaction of poly(dimethylcarbosiloxane) ionomers with metal ions. Networks-92.  Programm and Abstracts 11th Meeting of the polymer networks group. 1992 Univ. of California. San-Diego.
  9. Rogovina L.Z., Vasiliev V.G., Shchegolikhina O.I. Formation of reversible structure in poly(dimethylcarbosiloxane) containing side carboxyl groups. Les  Cahers de Rheologie des Polymeres Fondus V.  1993., V.XI, No.3-4. P.427.
  10. Васильев В.Г., Щеголихина О.И., Роговина Л.З., Жданов А.А., Слонимский Г.Л.,  Папков В.С. Разработка новых принципов технологии получения силоксановых эластомеров. Тезисы докладов Всероссийской научно-технической конференции. Наукоемкие химические технологии. Москва. 1993. C. 64.
  11. Роговина Л.З., Васильев В.Г., Щеголихина О.И., Жданов А.А., Папков  В.С., Слонимский Г.Л. Термоэластопласты на основе карбоксилсодержащих поли(диметилсилоксанов) в отсутствие и присутствии ионов металлов. Материалы Международной конференции по каучуку и резине. Москва. 1994. Т. 2. С.556.
  12. Rogovina L.Z., Vasiliev V.G., Shchegolikhina O.I., Papkov V.S.,  Zhdanov A.A.,  Slonimsky G.L. Formation and rheological behavior of thermoplastic elastomers based on carboxyl containing poly(dimethylsiloxanes) in the absence and with the presence of metal ions. Тезисы докладов XVII Международного  симпозиума по реологии. Саратов. 1994. С. 86.
  13. Rogovina L.Z., Vasiliev V.G., Shchegolikhina O.I., Zhdanov A.A. The  Peculiarities of physical network formation in carboxylcontaining poly(dimethylsiloxanes). Programm and Abstracts 12th Polymer networks group Conference.Polymer Networks-94. Prague. 1994, P. SL 4.
  14. Васильев В.Г., Роговина Л.З., О.И.Щеголихина, А.А.Жданов, Слонимский Г.Л.,  Папков В.С.. Развитие новых принципов технологии получения силоксановых эластомеров. Каучук и резина. 1994. №5. С. 4.
  15. Васильев В.Г., Роговина Л.З., Слонимский Г.Л.,  Папков. В.С., Щеголихина О.И., Жданов А.А. Реологическое поведение карбоксилсодержащих полидиметилкарбосилоксанов и природа образования обратимой физической сетки. Высокомол. соед., А. 1995. Т. 37. №2.  С. 242.
  16. Rogovina L.Z., Vasiliev V.G., Shchegolikhina O.I., Zhdanov A.A., Slonimsky

  G.L., Papkov V.S. The Peculiarities of physical network formation in carboxylcontaining poly(dimethylsiloxanes). Macromolecular Symposia. 1995. V. 93.  p. 135.

  1. Shchegolikhina O.I., Vasiliev V.G.,Karpova I.V., Molodtsova  Yu.A. Pozdniakova Yu.A. Polydimethylsiloxane telehelic ionomers : rheology of the bulk and ionomer solutions. 2nd International Symposium Molecular order and mobility in polymer systems. Book and Abstracts. Saint-Petersburg, 1996. P. 022.
  2. Rogovina L.Z., Vasiliev V.G. Comparison of the association process in physical  gels and in polymers with small amounts of stickers. Macromolecular Symposia. 1996. V. 106.  P. 299.
  3. Благодатских И.В., Щеголихина О.И., Ларина Т.А., Жданов А.А., Васильев В.Г. Телехелевые иономеры на основе полидиметилсилоксана. Синтез и свойства растворов. Высокомол. соед., А. 1996. T.38. № 11.  C.1876.
  4. Васильев В.Г., Щеголихина О.И., Мягков Р.Ф., Роговина Л.З.,  Жданов

А.А.,  Папков. В.С. Иономеры на основе карбоксилсодержащего 

полидиметилкарбосилоксана . Высокомол. соед., А. 1997. Т.39. №4. С. 699.

  1. Vasiliev V.G., Shchegolikhina O.I., Antipin M.Y., Dolgushin F.M., Belenova 

E.G., Matukhina E.V., Тез. Докл.  «21 Симпозиум по реологии» (Осташков,  24-29 июня 2002 г.). Москва. 2002. C.22.

  1. Папков В.С., Васильев В.Г., Бузин М.И., Дубовик И.И., Ильина М.Н. Реологические свойства мезоморфных полиорганосилоксанов. Высокомолекуляр.соединения, сер.А. 2001. Т. 43. №2. С. 330.
  2.   Васильев В.Г., Бузин М.И., Дубовик И.И., Ильина М.Н., Папков В.С. 

Реологические свойства мезоморфных полиорганосилоксанов. Тезисы докладов. Второй всероссийский каргинский симпозиум. «Химия и физика полимеров в начале XXI века». Ч.1. 29-31 мая 2000 г. Черноголовка. С1-67.

  1. Васильев В. Г., Щеголихина О.И., Позднякова Ю.А., Беленова Е.Г.,

Матухина Е.В. Влияние способа формирования кристаллической структуры на реологическое поведение органоциклотетрасилоксана в пластическо-кристаллическом состоянии. Известия  Академии наук. Серия  химическая, 2004. №2. С.312.

  1. Васильев В. Г., Щеголихина О.И., Позднякова Ю.А., Молодцова Ю.А.,

Бузин М.И., Беленова Е.Г., Матухина Е.В. Материалы.  «22 Симпозиум по реологии» (Валдай, 21-26 июня 2004 г.). Москва. 2004. С.24.

  1. Бузин  М.И.,  Васильев В.Г.,  Никифорова Г.Г.,  Белёнова Е.Г., Матухина

Е.В.,  Щеголихина О.И.. Твердые растворы и смеси мезоморфных циклотетрасилоксанов,  XI Всероссийской конференции Структура и  динамика молекулярных систем. Яльчик – 2004. Сб. тезисов.С.46.

  1.   Васильев В.Г., Щеголихина О.И., Антипин М.Ю., Беленова Е.Г., Матухина

Е.В.. Новый способ получения монокристаллов из пластической мезофазы на примере октафенилциклотетрасилоксана. ДАН. 2003.Т.393. №1. С.303.

  1. Matukhina E.V., Shchegolikhina O.I., Molodtsova Yu.A.,  Pozdniakova Yu.A.,

Lyssenko K. A., Vasil’ev V.G., Buzin M.I. New mesomorphic organocyclosiloxanes. II. Thermal behaviour and mesophase structure of organocyclohexasiloxanes. Liquid Crystals. 2004. V.31. № 3. P.401.

  1. Васильев В.Г., Щеголихина О.И., Позднякова Ю.А., Антипин М.Ю.,

Долгушин Ф.М., Беленова Е.Г., Матухина Е.В. Особенности реологического поведения пластических кристаллов.  Сб. трудов Научного семинара «Актуальные проблемы реологии». 2003г. Барнаул. Алтайский государственный технический университет им. И.И.Ползунова. С.18.

  1. Бузин М.И.,  Васильев В.Г.,  Никифорова Г.Г.,  Белёнова Е.Г., Матухина

Е.В.,  Щеголихина О.И. ”Твердые растворы и смеси мезоморфных циклотетрасилоксанов”, Сб. Структура и динамика молекулярных систем. Выпуск XI. Часть1. Казань. Казанский государственный универститет. 2004. С. 217.

  1. Shchegolikhina O.I., Pozdniakova Yu.A., Molodtsova Yu.A., Vasiliev V.G., Buzin M.I., Matukhina E.V. New mesomorphic stereopegular cyclosiloxanes. Modern trends in Organoelement and polymer chemistry. International Conference Dedicated to 50 th  Anniversary of A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences. Book of Absrracts. May 30-June 4, 2004.  P109.
  2. Беленова Е.Г., Матухина Е.В., Разумовская И.В., Васильев В.Г. Получение монокристаллов и ориентированных поликристаллических структур методом капиллярного течения в мезоморфном состоянии на примере ОФЦТС. III Международная научная конференция «Кинетика и механизм кристаллизации». Тезисы докладов, 12-14 октября 2004 г., Иваново, с.68.
  3. Васильев В.Г., Матухина Е.В.,  Щеголихина О.И., Молодцова Ю.А., Позднякова Ю.А.,  Беленова Е.Г.,  Бузин М.И.  . Индуцированное напряжением структурообразование в мезоморфных циклосилоксанах. Десятая всероссийская конференция «Кремнийорганические соединения: синтез, свойства, применение» Тезисы докладов. 26-30 мая 2005, Москва 2005, с. У6.
  4. Molodtsova Yu. A., Pozdniakova Yu..A.  , Matukhina E. V., Blagodatskikh I.V., Vasil’ev V. G., Buzin M.I., Semenova N.S., Shchegolikhina O.I.. Synthesis and properties of  stereopegular organocyclo [RSi(O)OR’]12. International Conference “From molecules towards materials” IV Razuvaev Lectures.  September 3-11, 2005. Nizhny Novgorod, Russia, p.O57.
  5. Molodtsova Yu., Matukhina E., Buzin M., Vasiliev V., Katsoulis D.,  Shchegolikhina O.  Synthesis and properties of  new cyclododecasiloxanes: tris-cis-tris-trans [RSi(O)OSIMe3]12 (R=Me, Vi). The 14th International Symposium on  Organosilicon Chemistry. ISOSXIV. July 31-August 5, 2005. 3rd European Organosilicon Days. Wurzburg, Germany 2005. Abstracts. P.191.
  6. Бузин М.И., Четвериков А.А., Позднякова Ю.А., Беленова Е.Г., Щеголихина О.И., Васильев В.Г.,  Матухина Е.В. Новые циклоорганосилоксаны: мезоморфные свойства и эволюция фазового состава;  cis-[RSi(O)OSiMe3]4 где R= Et, Ph. Структура и динамика молекулярных систем. Яльчик – 2006. Сб. тезисов докладов и сообщений на  XIII Всероссийской конференции.25-июня-1 июля 2006 г. Уфа-Казань-Москва-Йошкар-Ола. 2006. с.40.
  7. Бузин М.И., Беленова Е.Г., Матухина Е.В.,  Никифорова Г.Г., Щеголихина О.И., Молодцова Ю.А., Васильев В.Г. Новые циклоорганосилоксаны: специфика формирования кристаллической и мезоморфной структуры в экструдатах стереорегулярных циклотетрасилоксанов в условиях капиллярного течения.  Структура и динамика молекулярных систем. Яльчик – 2006. Сб. тезисов докладов  и сообщений на  XIII Всероссийской конференции.25-июня-1 июля 2006 г. Уфа-  Казань-Москва-Йошкар-Ола. 2006. с.41.
  8. Беленова Е.Г., Матухина Е.В., Бузин М.И.,  Никифорова Г.Г., Щеголихина О.И., Молодцова Ю.А., Васильев В. Г.  Реологические свойства смесей пластических кристаллов.  «23 Симпозиум по реологии».  Материалы, 19-24 июня 2006,  г. Валдай, с.25.
  9. Бузин М.И., Четвериков А.А., Позднякова Ю.А., Белёнова Е.Г., Щеголихина О.И., Васильев В.Г., Матухина Е.В.. Новые циклоорганосилоксаны: мезоморфные свойства и эволюция фазового состава; cis-[RSi(O)OSiMe3]4, где R= Et, Ph. // Структура и динамика молекулярных систем: Сб. статей. Вып. XIII, Ч. I. – Уфа: ИФМК УНЦ РАН, 2006.C. 139-142.
  10. Бузин М.И., Е.Г. Белёнова, Е.В. Матухина Г.Г. Никифорова, О.И. Щеголихина, Ю.А.Молодцова, В.Г. Васильев. Новые циклоорганосилоксаны: специфика формирования кристаллической и мезоморфной структуры в экструдатах стереорегулярных циклотетрасилоксанов в условиях капиллярного течения. // Структура и динамика молекулярных систем: Сб. статей. Вып. XIII, Ч. I.– Уфа: ИФМК УНЦ РАН, 2006. – C. 135-138.
  11. Васильев В.Г., Матухина Е.В., Беленова Е.Г.,  Щеголихина О.И., Позднякова Ю.А.,  Антипин М.Ю.. Формирование циклотетрасилоксанами упорядоченных структур с различной морфологией  под влиянием сдвигового поля приложенного в мезоморфном состоянии. Сб. статей по материалам I международной конференции «Деформация и разрушение материалов», Москва, Интерконтакт Наука,  2006,  II том, с.500.
  12. Беленова Е.Г., Матухина Е.В., Щеголихина О.И., Антипин М.Ю., Лысенко К.А., Васильев В.Г.. Капиллярное течение в пластическо-кристаллическом состоянии – новый способ получения монокристаллов и ориентированных структур. XII Национальная конференция по росту кристаллов. Тезисы докладов. Институт кристаллографии имени А.В. Шубникова РАН. Москва, 23-27 октября 2006 с.473.
  13. Беленова Е.Г.  , Матухина Е.В., Щеголихина О.И., Позднякова Ю.А., Антипин М.Ю., Лысенко К.А., Васильев В.Г. Изменение структурных характеристик кристаллических систем путем механического воздействия на молекулярную и надмолекулярную самоорганизацию в пластическо-кристаллическом состоянии. Тезисы докладов. Институт кристаллографии имени А.В. Шубникова РАН. Москва, 23-27 октября 2006г.  С. 97.
  14. Беленова Е.Г. , Матухина Е.В., Разумовская И.В., Бузин М.И., Щеголихина О.И., Васильев В.Г. Новый взгляд на механизмы течения пластических кристаллов. Конференции молодых ученых «Реология и физико-химическая механика гетерофазных систем». Программа и тезисы докладов. Карачарово. 23-28 апреля 2007 г. С. 49.
  15. Беленова Е.Г. , Матухина Е.В., Разумовская И.В., Бузин М.И., . Никифорова Г.Г., Щеголихина О.И., Молодцова Ю.А., Васильев В.Г. Аномалии течения пластических кристаллов. Тезисы докладов VI Всероссийской конференции молодых ученых « Проблемы механики . Теория, эксперимент и новые технологии.» Новосибирск, 6-8 февраля  2007 г. С.5.
  16. Беленова Е.Г. , Матухина Е.В., Васильев В.Г. , Щеголихина О.И.

Структурная организация и деформационное поведение смесей пластических кристаллов. Сборник тезисов IV межвузовской конференции молодых ученых. Санкт-Петербург. 2007. С. 29.

  1. Бузин М.И.,  Васильев В.Г.,  Никифорова Г.Г., Молодцова Ю.А.,

Беленова Е.Г., Щеголихина О.И., Матухина Е.В. Растворы

  стереорегулярныхциклосилоксанов в низкомолекулярных

  кремнийорганических жидкостях.  Структура и динамика молекулярных

  систем. XIV Всероссийская  конференция. Яльчик – 2007. Сб. тезисов.

  Выпуск  XIV. -  Казань: Казанский государственный университет.

  2007. С.40.




© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.