WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

 

На правах рукописи

Пчелинцева Нина Васильевна

ГАЛОГЕНЗАМЕЩЕННЫЕ ПЕНТЕН-, ПЕНТАНДИОНЫ,

ИХ КОНДЕНСИРОВАННЫЕ АНАЛОГИ В СИНТЕЗЕ

N,O,S-СОДЕРЖАЩИХ ГЕТЕРОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ

02.00.03 – органическая химия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора химических наук

Саратов - 2008

Работа выполнена на кафедре органической и биоорганической химии  ГОУ ВПО «Саратовский государственный университет им.Н.Г.Чернышевского»

Научный консультант: доктор химических наук, профессор

Федотова Ольга Васильевна

Официальные оппоненты:

-  доктор химических наук, профессор Юровская Марина Абрамовна

-  доктор химических наук, профессор Древко Борис Иванович

-  доктор химических наук, профессор Гунькин Иван Федорович

Ведущая организация:  Воронежский государственный университет

Защита  состоится «_29__»  __декабря_________ 2008 г. в _14__ часов

на заседании диссертационного совета Д  212.243.07 при Саратовском государственном университете им.Н.Г.Чернышевского по адресу: 410012, Саратов, ул.Астраханская, 83, корпус 1, химический факультет СГУ

С диссертацией можно ознакомиться в Научной библиотеке Саратовского государственного университета им. Н.Г.Чернышевского.

Автореферат разослан  «_22_» __ноября____ 2008 г.

Ученый секретарь

диссертационного совета

Сорокин В.В.

ОБЩАЯ  ХАРАКТЕРИСТИКА  РАБОТЫ

Актуальность работы. Современное развитие теоретической  органической химии и ее прикладных областей требует создания новых методов, позволяющих существенно расширить возможности конструирования новых функционализированных ациклических, карбо- и O,N,S,-содержащих гетероциклических соединений.  Поэтому разработка таковых на основе доступных и высоко реакционноспособных (ди)карбонильных соединений является актуальной задачей.

Особый интерес среди них представляют непредельные 1,5-дикетоны ациклического,  полуциклического и бициклического рядов. Внимание к ним с позиций теоретической и экспериментальной органической химии определяется разнообразием  имеющихся активных центров – С=С связи, карбонильных групп, отличающихся по нуклеофильности вследствие сопряжения либо отсутствия такового, подвижных атомов водорода в -по-ложении к карбонильным функциям, определяющим возможность протекания реакций присоединения, замещения, гетероциклизации, а также близостью к природным и биологически активным веществам.

       Интерес к непредельным 1,5-дикетонам был проявлен еще в начале XX века Дильтеем, в 60-80 годы Фишером и Балабаном изучены некоторые превращения 2-пентен-1,5-дионов в присутствии кислот и ограниченно нуклеофильных реагентов. Хотя к началу наших исследований научное направление Саратовской школы химиков-органиков в области 1,5-ди-карбонильных соединений практически сформировалось, оставались незатронутыми вопросы синтеза конденсированных, в том числе бензаннелированных пентендионов, строения, влияния сопряжения, его характера на электрофильные (галогенирование) и нуклеофильные (O,S,N-гетероциклизация) реакции.  Вместе с тем, введение галогена (хлора, брома) в структуру пентендионов, их насыщенных и  конденсированных аналогов представляло несомненный интерес в связи с открывающейся перспективой развития новых фундаментальных направлений в химии 1,5-дикарбонильных соединений, включая задачи сравнительной химии и построения корреляционных зависимостей «структура-свойство» в рядах родственных соединений.

Настоящая работа выполнена в русле указанных проблем и представляет собой часть плановых научно-исследовательских работ, проводимых на кафедре органической и биоорганической химии Саратовского госуниверситета по теме «Теоретическое и экспериментальное исследование новых материалов и систем с заданными физико-химическими свойствами» (рег. № 3.4.03), при поддержке государственных научно-технических программ МНТП «Общая и техническая химии» МОПО РФ (проект № 01.0106.Ф), гранта № 06-03-32667а  Российского фонда фундаментальных исследований.

Главная цель настоящей работы  заключалась в разработке основ нового научного направления – химии галогензамещенных пентен-, пентандионов и конденсированных аналогов, включая вопросы направленного синтеза, стереостроения, выявления закономерностей и специфики их превращений в  нуклеофильных реакциях, приводящих к N,O,S-гетероциклизации; вероятных схем образования галогензамещенных пяти-, шести-, семичленных гетероциклических соединений и изыскание путей их возможного практического применения.

Научная новизна. Разработаны вопросы теории образования моно-, ди-, тригалогензамещенных пентен-, пентандионов и их конденсированных аналогов: пропилиден(пропанонил)-циклогексанонов, -тетрагидронафта-линонов, позволившие выявить закономерности и специфику реакций галогенирования в зависимости от условий, строения субстрата и природы реагента.

Обнаружены общие тенденции галогенирования в рядах непредельных, насыщенных диоксосоединений - электрофильное присоединение по кратной и енольной С=С связям.

Найдены новые реакции:

- карбоциклизации пропанонилциклогексанонов в бициклононенолоны, являющихся интермедиатами основного гидролиза солей тетрагидро-хроменилия;

- прямого перехода солей пирилия, тетрагидро- и бензодигидрохроме-нилия в дихлорпентендионы, полифункциональность которых может быть использована для построения нового типа пяти-, шести-, семичленных гетероорганических соединений;

- гетероциклизации галогензамещенных пентен-, пентандионов и пропанонилтетрагидронафталинонов в (хлорзамещенные)ароилфураны различной степени насыщенности, оксопропилциклогексан-1,3-дионов – в спироциклические дигидрофураны.

Показано, что  азациклизация пентен-1,5-дионов и галогензамещенных  аналогов  приводит к дихлорпиридинам, дихлорпентан-1,5-дионов к монохлорпиридинам и ароилпирролам соответственно,  пропилиденонилтетрагидронафталинонов – к диазепинам;

Выявлена принципиальная возможность получения  моно- и бисаминотиазолов с участием -хлоркетонного фрагмента дихлорпентен- , пентандионов.

Разработана стратегия синтеза непредельных  1,5-дикетонов, их конденсированных аналогов с различным расположением ,-енонового фрагмента  в  дикетонной  цепи и относительно алицикла.

Практическая значимость работы заключается:

-  в разработке оригинальных способов получения галогензамещенных пентен-, пентандионов  и их конденсированных аналогов, хлорзамещенных солей пирилия, тиопирилия, пиридинов, новизна и результативность которых подтверждена 4 авторскими свидетельствами; 

  - в  выявлении биологической активности в рядах хлорзамещенных гетероциклических соединений: антимикробной – среди солей 3-хлортио-пирилия (защищено авторским свидетельством), пестицидной -  для ароилхлорфуранов, хлорпиридинов, бисаминотиазолов, обобщенные в базе данных биологически активных веществ, синтезированных на химическом факультете Саратовского госуниверситета, предназначенной для широкого круга специалистов.

       Ценность методологических решений задач настоящего исследования заключается в возможности их распространения на структурно-родственные системы.

       Высокую степень обоснованности научных результатов, положений и выводов обеспечивает совокупность современных физико-химических методов исследования, используемых автором, в том числе, ИК, ЯМР 1Н и 13С  спектроскопия, масс-спектрометрия, их корректность и соответствие общетеоретическим представлениям.

На защиту выносятся  следующие положения:

- новое перспективное научное направление в химии галогензамещенных пентен-, пентандионов и их конденсированных аналогов, основой которого являются разработанные методы синтеза галогенирования пентен-, пентан-дионов, конденсированных аналогов, их гетероциклизации в 5,6,7-и членные N,O,S-содержащие гетероциклические соединения;

-  результаты экспериментального обоснования общности и специфики превращений галогензамещенных 2-пентен-, пентан-1,5-дионов, пропилиденонилциклогексанонов, -тетрагидронафталинонов в электрофильных и нуклеофильных реакциях в ароил(хлор)фураны, пирролы,  моно(ди)хлорпиридины, соли монохлортиопирилия и дихлорпирилия, аминотиазолы, диазолины;

- сравнительная химия в рядах ,-непредельных 1,5-дикетонов и их хлорзамещенных аналогов;

- особенности стереостроения непредельных 1,5-дикетонов ациклического и полуциклического рядов, галогензамещенных аналогов;

- результаты выявленной высокой антимикробной и пестицидной активности в рядах (хлор)замещенных гетероциклических соединений.

- выявленная высокая биологическая активность: антимикробная (защищено авторским свидетельством), пестицидная  в рядах хлорзамещенных гетероциклических соединений.

Апробация работы. Основные результаты работы докладывались на IX симпозиуме по химии гетероциклических соединений ( Братислава, ЧССР, 1987), V конференции Федерации европейских химических обществ по Гетероциклам в биоорганической химии (Прага, 1988), конференции по химии и технологии пиридинсодержащих пестицидов (Черноголовка, 1989), Межреспубликанской конференции по синтезу, фармакологии и клиническим аспектам новых психотропных и сердечно-сосудистых веществ (Волгоград, 1989), Всесоюзных и межрегиональных  совещаниях по химическим реактивам (Ашхабад, 1989; Алма-ата, 1991; Дилижан, 1991), Всесоюзном совещании  по кислородсодержащим гетероциклам (Краснодар, 1990), Всесоюзной конференции «Химия гетероциклических соединений» (Рига, 1991), I Всесоюзной конференции по теоретической органической химии (Волгоград, 1991), V Всесоюзной конференции по химии азотсодержащих гетероциклических соединений (Черноголовка, 1991), Всесоюзных, Всероссийских и международных конференциях «Карбонильные соединения в синтезе гетероциклов» (Саратов,  1989, 1996, 2004, 2008), Международной конференции, посвященной Н.И.Вавилову (Саратов, 1997), Международной конференции по химии S,Se,.Р-содержащих соединений (С.Петербург, 1998), Всероссийской практической конференции по технологии органических соединений (Ярославль, 1998), конференции «Химия для медицины и ветеринарии» (Саратов, 1998), ХУI и XVIII Менделеевских съездах по общей и прикладной химии (С.-Петербург, 1998; Москва, 2007), XX Всероссийской конференции по химии и технологии органических соединений серы (Казань, 1999),  V Всероссийской конференции молодых ученых «Современные проблемы теоретической и экспери-ментальной химии» (Саратов,  2005), Международной конференции «Орга-ническая химия от Бутлерова и Бельштейна до современности» (С.-Петер-бург, 2006), конференции «Фундаментальные и прикладные проблемы совре-менной химии в исследованиях молодых ученых» (Астрахань, 2006),  IX научной школы-конференции по органической химии (Москва, 2006), XIX Международной научно-технической конференции «Химические реактивы, реагенты и процессы малотоннажной химии. «Реактив-2006» (Уфа, 2006), XVII Российской Молодежной научной конференции «Проблемы теоретической и экспериментальной химии» (Екатеринбург, 2007, 2008), III школе-семинаре «Квантово-химические расчеты: структура и реакционная способность органических и неорганических молекул» (Иваново, 2007), XI Международной научно-технической конференции «Перспективы развития химии и практического применения алициклических соединений» (Волгоград, 2008), конференции «Пути и формы совершенствования фармацевтического образования. Создание новых физиологически активных веществ» (Воронеж, 2007).

Публикации. По теме диссертации опубликовано 64 работы: 32 статьи, из них 14 (включая 5 обзоров) в научных журналах, входящих в перечень ведущих рецензируемых научных журналов и изданий, рекомендованных ВАК, 1 учебное пособие, 2 главы в монографии, 24 тезисов докладов, получено 5 авторских свидетельств на изобретения.

Личный вклад автора в работы, выполненные в соавторстве и включенные в диссертацию, выразился в выборе и постановке проблемы, ее теоретическом обосновании и разработке, участии во всех этапах исследования и интерпретации полученных результатов.

Объем и структура работы. Диссертация изложена на 280 страницах машинописного текста, включая введение, 5 глав, выводы, список цитируе-мой литературы из 260 наименований, 20 таблиц и 15 рисунков.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1,5-Дикетоны, в том числе ,-непредельные, привлекают исследователей высокой реакционной способностью и возможностью использования их для получения ценных в практическом отношении N,O,S-содержащих гетероциклических соединений, нашедших применение в качестве лекарственных препаратов, модельных веществ при изучении состава сернистых нефтей, светочувствительных материалов и др.

Анализ литературных данных свидетельствует, что к настоящему времени осуществлен синтез значительного ряда ациклических непредельных 1,5-дикетонов. Сведения, касающиеся получения полуциклических диоксосоединений  имеются лишь в ограниченном числе публикаций, галогензамещенные аналоги не представлены в печати. Это весьма неоправданно, поскольку введение галогена в молекулу открывает новые препаративные возможности для синтеза функционализированных алифатических, алифатическо-циклических карбонильных, карбо- и гетероциклических соединений.

Представлялось важным восполнить имеющиеся пробелы как в синтезе моно-, полигалогензамещенных  пентендионов, в сравнительном плане пентандионов и конденсированных систем, установить направленность галогенирования, его стереохимические особенности в зависимости от характера реагента, структуры субстратов, так и возможность гетероциклизации в условиях электрофильных и нуклеофильных превращений.

       Ключевыми субстратами явились непредельные 1,5-дикетоны нескольких типов: ациклические жирноароматические три- и тетразамещенные 1,5-дикетоны 1-4, а также конденсированные аналоги циклогексанонового 5,6 и тетрагидронафталинонового 7 рядов, отличающиеся числом, природой заместителей, положением кратной связи и характером оксогрупп, сопряженных с кратной связью, арильным заместителем либо свободных от сопряжения, а также их насыщенные аналоги 8-13.

 

       Это должно было привести, с одной стороны, к установлению особенностей и закономерностей их химического поведения в нуклеофиль-ных и электрофильных реакциях, с другой стороны, определить препаратив-ные возможности и область применения 1,5-дикетонов и продуктов их превращений.

1. ,-НЕПРЕДЕЛЬНЫЕ  1,5-ДИКЕТОНЫ АЦИКЛИЧЕСКОГО

И ПОЛУЦИКЛИЧЕСКОГО РЯДОВ

К началу настоящих исследований было реализовано четыре подхода к синтезу непредельных 1,5-дикетонов: основной гидролиз солей пирилия,  кетовинилирование карбонильных соединений, метиленирование насыщен-ных 1,5-дикетонов, ацилирование ,-непредельных кетонов. Проведенные нами исследования показали, что наиболее удобными для получения 2-пентен-1,5-дионов 1-4, пропилиденонилциклогексанонов 5 и их бензаннели-рованных аналогов 7 являются условия основного гидролиза солей пирилия и  конденсированных аналогов. Для синтеза пропенонилциклогексанонов 6 на-ми использовался метод кетовинилирования. Однако эти методы имели ограничения по выходам целевых продуктов, отличались плохой воспроизводимостью; это было устранено после  разработанных нами оптимальных условий основного гидролиза солей пирилия, тетрагидро- и бензодигидрохроменилия и кетовинилирования с использованием арил--хлорвинилкетонов. 

1.1. Основной гидролиз солей пирилия, тетрагидро-  и

бензодигидрохроменилия

                 Изучены превращения солей пирилия 14-16, тетрагидро- 17 и бензо-дигидрохроменилия 18 в условиях основного гидролиза. При гидролизе с использованием водно-спиртового раствора (пропан-2-ол) гидроксида натрия солей пирилия 14а-ж,15,16 и бензодигидрохроменилия 18а-в впервые получены три-, тетразамещенные (симметричные, несимметричные) 2-пен-тен-1,5-дионы 1б,д,е,ж, 4а, пропилиденонилтетрагидронафталиноны  7а-в.

       Отличительной  особенностью  в  поведении  солей тетраги-рохроменилия 17а-в при щелочном гидролизе является образование непредельных семициклических дикетонов – 2-(3-оксо-1-R3-2-R5-пропилиден)циклогексанонов 5а-в и ранее неизвестных 2,4-диарилбицикло-[3.3.1]нон-3-ен-2-ол-9-онов 19а-в, являющихся новыми в условиях основного катализа.

Таким образом, при гидролизе солей тетрагидрохроменилия 17а-в наблюдаются два параллельных  процесса. Можно полагать, что превращения борфторатов тетрагидрохроменилия 17а-в в присутствии щелочи начинаются с образования изомерных хроменолов, из которых только -изомеры 22 и 23 претерпевают дециклизацию с возникновением диенолонов, преобразующихся в бицикло-[3.3.1]-нон-3-ен-2-ол-9-оны 19а-в и менее реакционноспособный для карбоциклизации ендион 5.

Методом теории функционала плотности DFT на уровне теории B3LYP/6-311G+(d,p) проведено квантовохимическое исследование электронного строения катиона 2,4-дифенилтетрагидрохроменилия 17а (рис.1). Согласно расчетам в реакции катиона тетрагидрохроменилия с гидроксид-ионом, являющейся зарядово-контролируемой, следует ожидать

нуклеофильной атаки  именно - и '-реакционных центров гетероцикла, и, следовательно, реализации цепи дальнейших химических превращений по двум направлениям I и III, что согласуется с данными эксперимента. Выходы конечных продуктов 19 и 5, образующихся по реакционным каналам I и III, составляют 36 и 46% соответственно при 25C, 55 и 31% при 75C. Реализация обозначенных  направлений на дальнейших стадиях может определяться термодинамикой интермедиатов 22а,б и 23а,б (в соединениях 22 и 23 появляется хиральный  центр - атом углерода, связанный с гидроксильной группой).

Различие в термодинамической устойчивости интермедиатов 22 и 23 служит по крайней мере одной из причин наблюдаемой температурно-обусловленной  инверсии  выходов конечных продуктов 19  и 5.  При температуре  20С преобладание  продукта  5  объясняется более  низким энергетическим барьером  первой  стадии  (формирования OH-аддукта) многостадийного  процесса. По мере увеличения температуры реакции повышается вероятность преодоления барьера, требующегося для перехода от интермедиата 23  к более высокоэнергетическому интермедиату 22. Другой причиной снижения выхода дикетона 5 по сравнению с гидроксикетоном 19 по мере возрастания температуры может служить увеличение скорости колебательно-вращательно-инверсионного движения приконденсированного алицикла, которое создает стерические препятствия нуклеофильной атаке гетероциклического катиона гидроксид-ионом.

Таблица 1.1

Значения сумм электронной и термической энтальпии (ΔH) и свободной энергии (ΔG)

в атомных единицах (а.е., хартри на частицу)*

Молекула

ΔH

ΔG

22а

–962.399464

–962.467824

22б

–962.400937

–962.468860

23а

–962.407984

–962.472981

23б

–962.401155

–962.468985

*Включают энергию нулевых колебаний

Таблица 1.2

Разностные энергетические характеристики

(ккал/моль)

Разность значений

энергии

ΔΔH

ΔΔG

22а – 22б

0.924

0.650

23а – 23б

–4.29

–2.51

22а –23а

5.35

3.24

22а – 23б

1.06

0.729

22б – 23а

4.22

2.59

22б – 23б

0.137

0.0784

Образование смеси изомерных 4-R3-2-фенил-7,8-бензо-5,6-дигидрохромен-2(4)-олов 20б,в и 21б,в наряду с 3,4-дигидро-2-[3-оксо-1-R3-3-фенил-пропилиден)]-нафтален-1(2Н)-онами 7б,в при щелочном гидролизе солей бензодигидрохроменилия 18б,в также ранее не отмечалось.

Рис.1.1. Натуральные заряды на атомах

изолированного  катиона 2,4-ди- 

фенилтетрагидрохроменилия 17а

Найдены  условия направленного  синтеза  непредельных дикетонов 

1-5,7 (выход 75-98%) при замене гидроксида натрия на ацетат натрия и использовании в качестве катализатора оксида алюминия, растворителя -  изопропилового спирта.

Роль оксида алюминия заключается в поляризации С-О связи гетероцикла, что способствует раскрытию последнего и образованию непредельного дикетона.

Разработка условий кетовинилирования циклогексанона арил--хлорвинилкетонами 24а-в позволила получить ранее неизвестные 1-арил-4,5-тетраметилен-2-пентен-1,5-дионы 6б,в, содержащие электронодонорные заместители  с выходами 20-54%, что не удавалось достичь ранее на указанных объектах.

Таким образом, в ходе работы обнаружен ряд новых необычных превращений в ранее неизвестные продукты основного гидролиза бензодигидрохроменолы и бициклононенолоны. Разработаны условия раскрытия пирилиевого и хроменилиевого циклов в условиях улучшенного нами способа – гидролиза солей пирилия и конденсированных аналогов на оксиде алюминия, позволяющего осуществить препаративный синтез новых и известных 2-пентен-1,5-дионов,  2-(1,3-диарилпропилиден-3-он-1)цик-логексан-1-онов,  2-(1,3-диарилпропилиден-3-он-1-ил)тетрагидронафталин-1-онов.

1.2.  Строение 2-пентен-1,5-дионов, пропилиденциклогексанонов

и их бензаннелированных  аналогов

С точки зрения теории взаимного влияния атомов в молекуле  к наиболее значительным структурным фрагментам в объектах наших исследований следует отнести сопряженную еноновую систему в ,-непредельных 1,5-дикетонах. Конформационное состояние в сопряженной системе >С=С-С=О  определяет не только активность кратной С=С связи в реакциях с электрофильными, а С=О связи с нуклеофильными реагентами, но и расположение второй карбонильной группы и реакционную способность карбонильных функций в 1,5-положениях при гетероциклизации.

Структура диоксосоединений 1-7 обоснована нами данными ИК и ЯМР 1Н и 13С спектроскопии, масс-спектрометрии.

Величина отношения интенсивностей полос колебаний сопряженных связей С=О и С=С, находящаяся в пределах 0.6-0.9 и разность значений этих полос в интервале 76-88 см-1 свидетельствует о s-цис-конформации пентен-дионов 1а-е, 3. Пентендионы 2 и 4а существуют преимущественно в виде s-транс-изомеров, на что указывают величина отношения интенсивностей колебаний С=О и С=С связей и разность значений этих полос равных соответственно 2.4 и 62-64 см-1 . Соотношение интенсивностей (0.7-0.9) по-лос поглощения и  аналитическая разность (74-110 см-1) для конденсирован-ных непредельных 1,5-дикетонов 5а-в и 7а-в подтверждают их s-цис-конфор-мацию.

Показано, что непредельные 1,5-дикетоны 1а-г,3 существуют преиму-щественно в виде цис(Z)-изомеров Присутствие в масс-спектре непре-дельного дикетона 7б двух сигналов на хроматограмме с близким временем удерживания 31.91 и 32.27, имеющих соответственно М+ 382 и М+-1 381 свидетельствует о том, что он образуется в виде смеси Z- и E-изомеров. Преимущественно в виде Z-формы образуются непредельные дикетоны 7а,в. Общим для всех рассмотренных типов дикетонов является присутствие в спектрах низкочастотной полосы в области 1570-1580 см-1, свидетельствующей о Z-конфигурации, высокочастотной -  1620-1640 см-1 о E-конфигурации С=С связи.

Для ендионов 6а-в с удаленной от алицикла кратной связью установлено сохранение s-транс-конформации сопряженного фрагмента  кетовинилирующего средства 24а-в; в спектрах присутствуют полосы С=О и С=С связей в области  1680-1670 и 1615-1620 см-1, соответственно, с харак-теристиками по интенсивности (1.3-1.5) и разности частот (50-65 см-1), что говорит  в пользу реализации Z-s-транс-конформеров для соединений 6а-в.

 

ИК спектры всех непредельных дикетонов 1а-е, 2-4а, 5а,б, 6а-в, 7а-в свидетельствуют об отсутствии енольных форм.

Сравнительный анализ данных ЯМР 13С спектров для пентендионов 1а,б,г-е, 2-4а, пентандионов 9а-в и ацетофенона свидетельствует о сильнопольном смещении сигнала углеродного атома карбонила, сопряженного с двойной связью. В каждой выбранной паре пентен- и пентандионов это смещение составляет 7.59 м.д. для 1,3,5-трифенил-замещенных и 5.46 м.д. для тетразамещенных дикетонов, содержащих метильную группу при двойной связи. Сигналы углеродов карбонильных групп, не сопряженных с двойной связью, смещены в более слабое поле – 195.81-198.04 м.д. для 1а,б,г,д, 2  и 200.00-202.64 м.д. для 3, 4а, что сравнимо со значением химического сдвига карбонильного углерода ацетофенона, равного 198.14 м.д..

2.  ГАЛОГЕНИРОВАНИЕ 1,5-ДИКЕТОНОВ

АЦИКЛИЧЕСКОГО И ПОЛУЦИКЛИЧЕСКОГО РЯДОВ

Нами впервые предприняты систематические исследования реакций 1,5-дикарбонильных соединений с галогенами и галогенирующими агентами с целью выяснения возможности введения галогена в молекулу непре-дельных 1,5-дикетонов для функциональной и структурной модификации, как самих дикетонов, так и гетероциклических соединений, получаемых на их основе.

Выбор в качестве субстратов 1,5-дикетонов 1-13, отличающихся степенью насыщенности и конденсированности, числом и природой заместителей, типом сопряжения, позволял выявить закономерности их поведения с галогенами, в том числе влияние стерических и электронных факторов на направления превращений. Поскольку электрофильные реакции непредельных 1,5-дикетонов к моменту настоящих исследований были изучены мало и их обобщение представлено нами в обзоре. Имелись лишь единичные сведения о реакциях непредельных 1,5-дикетонов с галогенами.

2.1. Хлорирование 2-пентен-1,5-дионов, их насыщенных и конденсированных аналогов

Хлорирование пентендионов 1а-е, 2-4а и их конденсированных аналогов  5а-в, 6а-в и 7а-в  осуществлено при действие хлора в тетрахлорметане при 20С. Установлено,  что реакция 1а с хлором даже в мягких условиях проходит неоднозначно и приводит к смеси двух продуктов – 2,4-дихлор-1,3,5-три-фенил-2-пентен-1,5-диону 25а и хлориду 2,4,6-три-фенилпирилия 26а. Низкий выход хлорзамещенного дикетона 25а (37%) объясняется высокой скоростью циклизации исходного пентендиона 1а под действием выделяющегося в процессе хлорирования хлороводорода и образованием хлорида пирилия 26а, выход которого составляет 50%.

Возникновение указанных продуктов свидетельствует о том, что реализуется два направления превращений пентендионов – хлорирование и внутримолекулярная О-циклизация, приводящая к соли пирилия.

Для подавления процесса солеобразования хлорирование осуществляли в присутствии связывающего HCl реагента – ацетата натрия. При исполь-зовании AcONa реакция 1а с хлором протекает селективно с образованием дихлорзамещенного дикетона 25а, выход которого возрастает до 80%.

Реакция носит общий характер и основными продуктами хлорирования пентендионов 1б-г в присутствии ацетата натрия при 20С являются 2,4-дихлор-1,3,5-триарил-2-пентен-1,4-дионы 25б-г, выходы которых составляют 72-88% .

Нами установлено, что на глубину хлорирования пентендионов оказывает влияние температура. Так, при хлорировании (Cl2, AcONa, CCl4) пентендионов 1а,б,г в тетрахлорметане при 70-75С образуются трихлорзамещенные пентендионы – 1,3,5-триарил-2,4,4-трихлор-2-пентен-1,5-дионы 27а,б,г с выходом 72-77%.

Механизм реакции изученного нами хлорирования в соответствии с общетеоретическими представлениями и результатами собственного эксперимента может быть рассмотрен как электрофильное присоединение хлора по двойной связи в алифатической цепи пентендионов 1 и двойной связи енольных форм 28 и 29 субстратов с последующим дегидрохлорированием интермедиатов 30,31,32 с образованием дихлорпентендионов 25 и трихлорпентендионов 27. Хлороводород, выделяющийся в ходе галогенирования, катализирует переход субстратов 1 в енольную форму 33, легко циклизующуюся в соль пирилия 26.

В приведенной схеме дихлорпентендион 25 представлен как промежуточный продукт на пути к трихлорзамещенному дикетону 27, что согласуется с результатами специально поставленного эксперимента по хлорированию дихлорпентендионов 25а,б,г в присутствии ацетата натрия при нагревании до 70-75С.

Енолизация дикетонов 1 имеет место и при полном связывании хлористого водорода ацетатом натрия. Это свидетельствует о том, что пентендионы характеризуются высокой подвижностью -водородных атомов, участвующих в таутомерном превращении «кетон – енол».

В случае дихлорпентендиона подвижность атомов водорода при С-4 легко объяснима влиянием атома хлора, расположенного также при С-4. Водородные атомы в метиленовом фрагменте монохлорпентендиона носят характер аллильных протонов, что на наш взгляд,  и определяет их активность.

Исходя из совокупности  спектральных данных для дихлор-пентендионов 25а-г установлены: s-транс-конформация сопряженных С=С и С=О связей, транс-положение атома хлора и арильного заместителя,  заслоненная конформация С-Сl и С=О связей в насыщенном  фрагменте, свидетельствующие о том, что в процессе хлорирования происходит изменение геометрии двойной связи С2-С3; в исходных триарилпентендионах 1а-г реализуется Z-конфигурация,  в продуктах реакции 25а-г, 27а,г - E-конфигурация кратной связи.

Таким образом природа заместителя (R=H, Ar) в -положении кетона 28  оказывает влияние на скорость  и стереохимию превращений.

С целью изучения влияния природы субстрата, а именно числа заместителей в дикетонной цепи, на глубину хлорирования проведено хлорирование тетразамещенных непредельных алкиларил-1,5-дикетонов 2-4а хлором в присутствии ацетата натрия в разном температурном режиме. Установлено, что тетразамещенные дикетоны 2-4а независимо от расположения заместителей – метильных и фенильных групп -  продуктов хлорирования при 20С не дают, а при 70С превращаются только в монохлордикетоны cоответственно 36, 37.

Источником существенных затруднений при хлорировании тетразамещенных пентендионов 2-4а является пространственное влияние заместителей, а в случае с кетонами 3,4а, и электронные эффекты метильных групп. Во-первых, Е-конфигурация двойной С=С связи в пентендионах 2 и 4а вносит затруднения в стадию присоединения хлора. Во-вторых, затруднения имеют место на стадии енолизации, определяющей скорость процесса в соответствии с общетеоретическими представлениями при проведении реакции в тетрахлорметане, что должно приводить к снижению общей скорости хлорирования. Это наблюдается экспериментально.

При действии на смесь Е-  и  Z-изомеров 2-(1,3-дифенилпропилиден-3-он-1)циклогексан-1-она 5а избытка хлора при 20С в присутствии ацетата натрия получен транс-транс-2-хлор-2-(1,2-дихлор-1-фенил)-3-оксо-3-фенил-пропил)циклогексан-1-он 38а:

При взаимодействии пропилиденонилтетрагидронафталинонов 7а,б с хлором в среде  тетрахлорметана в присутствии ацетата натрия получены соответствующие насыщенные дикетоны транс-2-хлор-2-(1-хлор-3-оксо-1,3-дифенилпропил)-3,4-дигидронафтален-1(2Н)-он 42а (выход 89%)  и транс-транс- 2-хлор-2-(1,2-дихлор-1-(4-метоксифенил)-3-оксо-3-фенилпропил)-3,4-дигидронафтален-1(2Н)-он 43б  (выход 60%).

Можно полагать, что на первом этапе происходит транс-присоединение хлора согласно общетеоретическим представлениям по механизму АЕ по кратной связи и образуются интермедиаты 44а,45а,45б,  а в случае дикетона 7а конечный продукт 43а. Объемный заместитель (атом хлора) располагается к алициклическому фрагменту псевдоаксиально. В ряду ациклических и полуциклических 1,5-диоксосоединений наблюдаемые превращения также подчиняются общим закономерностям. Трихлорзамещенные дикетоны 42а и 43б следует рассматривать как продукты, полученные в результате транс-присоединения хлора по механизму АЕ по енольной форме оксосоединений  44а и 45б.

Сохранить двойную связь, как это было в случае с пентендионами 1а-е, 2, 3, не удается  в алифатической цепи дикетонов циклогексанонового 6а и тетрагидронафталинонового 7а,б ряда.

В плане изучения сравнительной химии в реакциях галогенирования пентен- и пентандионов, в том числе установления вероятных механизмов их превращений, стереохимии продуктов реакций, и, учитывая отсутствие сведений, касающихся хлорирования арилалифатических насыщенных 1,5-дикетонов, исследовано поведение ди-, три- и тетразамещенных пентандионов 8-10 и их конденсированных аналогов 11-13, позволяющее решить также вопросы влияния жесткости системы при введении алициклических и бензаннелированных фрагментов в молекулу диоксосоединения.

Установлено, что в отличие от 2-пентен-1,5-дионов 1а-г, при взаимодействии их насыщенных аналогов - пентандионов 8а-в и 9а-г с хлором в тетрахлорметане солеобразование исключается.

Основными продуктами хлорирования насыщенных 1,5-ди- и 1,3,5-тризамещенных дикетонов 8а-в и 9а-г являются 2,4-дихлор-1,5-пентандионы 48-54, а 2-хлорпроизводные 46-47 и 2,2,4-трихлорпроизводные 55-57 образуются с небольшими выходами (7-10%). Исключением является 1,5-дифенил-3-метилпентан-1,5-дион 9г, преобразующийся при хлорировании в  1,5-дифенил-3-метил-2-хлорпентан-1,5-дион 46 с выходом 34%.

Нами обнаружено, что температура реакции не оказывает влияния на глубину хлорирования пентандионов 8а, 9б,г в отличие от пентендионов 1а,б,г.  Продолжительность же процесса определяет количество атомов хлора в продуктах реакции. С другой стороны, на продолжительность хлорирования влияет число и природа заместителей. В частности, 1,5-дифенил-1,5-пентандион 8а  реагирует с хлором значительно активнее, чем 1,3,5-триарилдикетоны 9а-в. Замена атомов водорода в фенильных заместителях пентандиона 8а на метоксигруппу (в соединении 8б)  или  хлор (в соединении  8в) сопровождается существенным увеличением времени реакции, а при переходе от 3-фенил-(9б) к 3-хлорфенилзамещенному (9в) длительность процесса не изменяется.

В описанных выше условиях (Cl2, CCl4, 75-80C) насыщенные тетразамещенные 1,5-дикетоны – 2-метил-1,3,5-трифенилпентан-1,5-дион 10 хлорируется только в положение С-4 с образованием монохлорзамещенного дикетона – 2-метил-1,3,5-трифенил-4-хлорпентан-1,5-диона 58, а 2,4-диметил-1,5-дифенилпентан-1,5-дион 59 не реагирует с хлором.

       

При сравнении поведения пентен- 2,3,4а и пентандионов 10,59, содержащих заместители в -положении к карбонильным группам, в реакциях с Cl2 установлено, что хлорирование 1,5-дикетонов направляется по вторичным, но не по третичным атомам углерода, вследствие стерических препятствий для енолизации диоксосоединения.

       Нами установлено, что природа заместителя в -положении насыщен-ных 1,5-дикетонов также оказывает влияние на скорость реакции хлорирования. В самом деле, енолизация любой из карбонильных групп 1,5-дикетона сопровождается сближением енольной гидроксильной группы и заместителя в -положении.

В частности, для получения трео-1,3,5-трифенил-2,4-дихлорпентан-1,5-диона 52 без примеси монохлордикетона 47 требуется хлорирование в течение 30 часов при 60С, в то время как взаимодействие 1,5-дифенилпентан-1,5-диона 8а с хлором завершается в течение 4-6 часов при 60С, а образование 3-метил-1,5-дифенил-2,4-дихлорпентан-1,5-диона 54 – через 6-8 часов при 60С. Значительное замедление реакции хлорирования дикетона 9б (заместитель в -положении R=С6Н5) по сравнению с дикетонами 8а (R=Н) и 9г (R=СН3) связано, вероятно, с 1,3-взаимодействием заместителей.

Отличительной особенностью образования трихлорпентендиона 27а из пентендиона 1а является то, что интермедиатом на пути к последнему является дихлорпентендион 25а. При этом при образовании трихлорзамещенных пентандионов 55 и 57, 1,5-дифенил- 48 и 3-метил-1,5-дифенил-2,4-дихлорпентан-1,5-дионы 54, не рассматриваются нами в качестве промежуточных дикетонов.

2,2,4-Трихлорпентандионы 55,57 являются продуктами хлорирования гем-дихлорзамещенных дикетонов 61,62, которые в небольших количествах могут образовываться, наряду с 2,4-дихлорзамещенными дикетонами 48, 54 из монохлорпентандионов.

Для семициклического дикетона 11а реакция с хлором в тетрахлорметане осуществляется без нагревания с образованием смеси веществ, из которой методом колоночной хроматографии выделен трихлозамещенный дикетон 63 – продукт замещения водорода по трем -положениям к карбонильным группам.

 

Хлорирования дикетона 13а в тетрахлорметане, бензоле или уксусной кислоте при комнатной температуре или нагревании не происходит, что согласуется с данными о хлорировании нециклических 1,5-дикетонов – 3-R-1,5-дифенилпентан-1,5-дионов 9а,б,г, которые реагируют с хлором сравнительно быстро (4-6 часов) только в случае R=Me,  для дикетонов с R=Ar время реакции составляет 30 часов при 60-80С. Учитывая вышесказанное, нами использован иодозобензолдихлорид, который в полярных растворителях выступает в качестве электрофильного хлорирующего агента и с успехом применяется для галогенирования 1,5-дикарбонильных соединений.

При его использовании субстрат 13а претерпевает превращение в течение 4 часов в ,'-дихлорзамещенный дикетон – 2-(1',3'-дифенил-2'-хлорпропан-3'-он-1'-ил)-2-хлор-1,2,3,4-тетрагидронафталин-1-он, представ-ляющий собой смесь эритро- (64а) и трео-(64а) изомеров с преобладанием последнего. Аналогичный результат получен при упрощении методики хлорирования путем  насыщения хлором диоксосоединения 13а в уксусной кислоте в присутствии йодбензола. При этом реагент получается непосредственно в реакционной смеси, и йодбензол выполняет роль переносчика хлора. Особенностью поведения диоксосоединения 13б, имеющего электронодонорный заместитель (С6Н4-ОMe), в уксусной кислоте является введение еще одного атома хлора с образованием трео-2-[3-оксо-3-фенил-1-(3-хлор-4-метоксифенил)-2-хлорпропил]-2-хлор-1,2,3,4-тет-рагидронафталин-1-она 66б.

Таким образом, найдены условия (AcONa) для образования моно-, ди-, трихлорзамещеннных пентен-, пентандионов и их конденсированных аналогов. В отсутствие ацетата натрия для непредельных арилзамещенных ациклических и бензаннелированных полуциклических диоксосоединений превалирует солеобразование. В рядах пентендионов при хлорировании отмечено сохранение кратной связи с изменением ее конфигурации и конформации сопряженного С=С-С=О фрагмента от Z-s-цис-  к  E-s-транс в продуктах. Разработан прямой переход, закрепленный авторским свидетельством, от солей пирилия, бензодигидрохроменилия к хлорзамещенным пентен-, пентан-1,5-дионам.

2.2. Бромирование 2-пентен-1,5-дионов, их насыщенных и конденсированных аналогов

Сведения о бромировании 2-пентен-1,5-дионов в литературе представлены единственной работой, свидетельствующей о превращении непредельного 1,5-дикетона при нагревании с бромом в бромид пирилия. При бромировании бромсукцинимидом, а затем при действии свободного брома с низким выходом (25%) получена соль – бромид 3-бромпирилия.

Учитывая исключительно высокую склонность пентендионов к внутримолекулярной гетероциклизации, нами подобраны мягкие условия для бромирования – действие бромом в тетрахлорметане при 0С. Однако оказалось, что реакция 1,3,5-трифенил-2-пентен-1,5-диона 1а с бромом проходит неоднозначно и приводит к смеси двух продуктов – 4-бром-1,3,5-трифенил-2-пентен-1,5-диона 67 и бромида 2,4,6-трифенилпирилия 68 с выходами 43 и 50%, соответственно.

       Использование четырехкратного мольного избытка ацетата натрия при 20С приводит к снижению солеобразования (до 30%) и реализации нового, неизвестного ранее направления гетероциклизации - возникновению 2-бензоил-3,5-дифенилфурана 69а (40%). Наряду с последним вследствие нуклеофильной реакции возникает 4-ацетокси-1,3,5-трифенил-2-пентен-1,5-дион 70а (15%). При нагревании реакционной смеси процесс смещается в сторону преимущественного образования ацетоксипентендиона 70а с выходом 78%. Эта тенденция сохраняется и для пентендионов 1б-г.

       Возможность образования приведенных продуктов 68-70 следует рассматривать как результат превращения первоначально возникающих бромзамещенных 2-пентен-1,5-дионов вследствие высокой подвижности атома брома по следующей схеме.

       

Образование ароилфуранов 69 обусловлено внутримолекулярной циклизацией бромпентендионов 67 за счет подвижного атома брома и карбонильной группы, сопряженной с двойной связью.

       Таким образом, в отличие от хлорирования пентендионов 1а-г, селективно протекающего при действии хлора в присутствии ацетата натрия с количественным образованием дихлорпентендионов 25а-г, бромирование в тех же условиях проходит неоднозначно.

Аналогично протекает бромирование полуциклических 1,5-дикетонов 7а,б с образованием бензаннелированных продуктов, в том числе впервые наблюдаемых в рассматриваемом ряду соединений: (4,5-дигидро-3-фенилнафто[1,2-b]фуран-2-ил)(фенил)метанона 71а, (4,5-дигидро-3-(4-метоксифенил)нафто[1,2-b]фуран-2-ил)(фенил)метанона 71б  выходами 31%, 14%, соответственно, наряду с солями 72а,б.

Наличие в молекуле исходных соединений тетрагидронафталинонового фрагмента, сопряженного с С=С связью 1,5-дикетонов,  определяет преимущественное направление реакции в сторону образования солей бензогидрохроменилия 71а,б и их высокие выходы (62-78%). 

Ароматизация непредельных полуциклических дикетонов наиболее вероятно протекает по ниже следующей схеме, а не через стадию присоединения молекулы брома по двойной связи с последующей полукетализацией и отщеплением HOBr. Это подтверждают квантовохимические расчеты полных энергий молекул – интермедиатов реакций методом Ab Initio с базисным набором 3-21G в программном пакете HyperChem.

 

Таким образом, найдено неизвестное ранее направление гетероциклизации ,-непредельных дикетонов ациклического и полуциклического рядов в (бензаннелированные) ароилфураны и обоснованы пути их образования через бромирование и нуклеофильное замещение галогена. Впервые предложено с использованием квантовохимических расчетов рассматривать механизм солеобразования в выбранных условиях галогенирования через полукетализацию, а не бромирование по кратной связи, как это ранее представлялось в периодической печати.

3.  РЕАКЦИИ O,S,N-ГЕТЕРОЦИКЛИЗАЦИИ АЦИКЛИЧЕСКИХ, ПОЛУЦИКЛИЧЕСКИХ  1,5-ДИКЕТОНОВ И ИХ ГАЛОГЕНЗАМЕЩЕННЫХ АНАЛОГОВ

Главное синтетическое использование галогензамещенных непредель-ных и насыщенных 1,5-дикетонов, конденсированных аналогов состоит в возможности их гетеро- и карбоциклизации и получении галогензамещенных гетероцик-лических соединений, прямой синтез которых не всегда реализуется.

Наряду с прямым галогенированием гетероциклических соединений для получения галогензамещенных гетероциклов используются также галогенсодержащие соединения ациклических рядов. Так, хлорзамещенные соли пирилия были получены на основе перхлор-2,4-пентадиеналя, бромзамещенные  - в результате многостадийного превращения пентендиона, включающего его бромирование бромсукцинимидом, бромом и взаимодействие с кислотным реагентом. Хлорпиридины получены гетероциклизацией либо монохлорглутаконового альдегида, либо нитрила 2,2,4-трихлор-5-оксопентановой кислоты.

Циклизация в ряду хлорзамещенных пентен-, пентан-1,5-дионов не изучалась, вследствие того, что сами объекты до наших работ были  неизвестны.

Распологая         разработанными нами и ставшими доступными методами синтеза пентен-, пентан-1,5-дионов, дихлорзамещенных и конден-сированных аналогов, были изучены их превращения с кислотами, азотистыми реагентами и сероводородом с целью решения фундаментальных вопросов теоретической химии этих многофункциональных субстратов, в том числе выяснения возможности получения хлорзамещенных О-,N- и S-содержащих гетероциклических соединений, важных и в практическом отношении; выявления  влияния атома  хлора на характер гетероциклизации 1,5-дикетонов; установления вероятных механизмов изучаемых процессов.

3.1. Исследование поведения 1,3,5-триарил-2-пентен-, пентан-

1,5-дионов и их конденсированных и 2,4-дихлорзамещенных аналогов в кислых средах

Изучены реакции 2,4-дихлор-2-пентен-1,5-дионов 25а-г с уксусной и хлорной кислотами. В отличие от незамещенных аналогов - пентендионов 1а-г циклизация дихлорпентендионов 25а-г с кислотами протекает неоднозначно. В зависимости от условий реакции и характера кислотного реагента продуктами циклизации могут быть как хлорзамещенные соли пирилия 73а-г, так и ароилхлорфураны 74а-г.

Так, показано, что дихлорпентендион 25а при кипячении в уксусной кислоте дает с количественным выходом бензоилхлорфуран 74а; в смеси уксусной и хлорной кислот удается выделить перхлорат 3,5-дихлор-2,4,6-трифенилпирилия 73а и 2-бензоил-3,5-дифенил-4-хлорфуран 74а с выходом 51 и 30%, соответственно. Выход перхлората 73а повышается до 77% при использовании уксусного ангидрида в смеси с уксусной и хлорной кислотами, вследствие образования ацетил-катиона, способствующего гетероциклизации.

Введение атома хлора или метоксигруппы в пара-положение фенильных заместителей в дихлорпентендионах  25б-г не изменяет общей тенденции их превращений.

Образование указанных выше  продуктов свидетельствует о том, что циклизация дихлорпентендионов 25а-г в отличие от пентендионов 1а-г проходит по двум направлениям: при участии только карбонильных групп с образованием хлорзамещенного катиона пирилия, либо за счет карбонильной группы, сопряженной с двойной связью, и хлорметиленового фрагмента с образованием ароилхлорфуранов.

Подтверждение общего характера гетероциклизации галоген-замещенных пентендионов получено введением в реакцию с уксусной кислотой 4-бром-1,3,5-трифенил-2-пентен-1,5-диона 67а при 25С. Последний превращается в 2-бензоил-3,5-дифенилфуран 69а, не содержащий более подвижного атома галогена (брома) в фурановом цикле.

 

Таким образом, образование бензоилфуранов 69,74 следует рассматривать как результат нуклеофильного замещения галогена при третичном атоме углерода в 1,5-дикетонах 25,67.

При длительном кипячении в уксусной кислоте хлорзамещенные нециклические насыщенные 1,5-дикетоны  46-57, в том числе и дихлорпентандионы 48-54, а также семициклический (оксо)дикетон 75 каких-либо превращений не претерпевают. Их О-циклизация проведена нами в условиях основного катализа. При взаимодействии 1,3,5-трифенил-2,4-дихлорпентан-1,5-диона 52 с триэтиламином в диоксане при 60С выделено соединение 76, которому нами на основании данных ЯМР 13С спектроскопии приписана структура транс-2-бензоил-3,5-дифенил-4-хлор-2,3-дигидрофурана.

Найдена принципиальная возможность образованиея 2-спиро-(3,5-дифенил-2,3-дигидрофуран)-2'-(5',5'-диметилциклогексан-1',3'-дион) 77 по не известному ранее для дигалогензамещенных дикетонов направлению.

Нами впервые рассмотрена возможность прямого перехода солей пирилия в хлорзамещенные аналоги.

При последовательном действии на борфтораты пирилия 14а-г,е,з ацетата натрия, хлора, а затем хлорной кислоты однореакторно получены соответствующие 3,5-дихлорзамещенные перхлораты пирилия 73а-г, е, з  через стадию дециклизации солей до пентендионов 1а-г,е,з.

Изменение условий последней стадии прямого перехода, а именно, кипячение реакционной смеси в уксусной кислоте, приводит к образованию ароилхлорфуранов 74а-г.

В условиях прямого перехода («in situ») последовательные гидролиз и хлорирование без выделения промежуточных соединений позволяют получать перхлораты и ароилхлорфураны, содержащие третбутильный и диметиламинофенильный заместители в гетероциклах, недоступные в иных условиях.

Таким образом, найдены новые подходы к синтезу замещенных (гидро)фуранов, в том числе спиранового ряда на основе галогензамещенных насыщенных и ненасыщенных 1,5-дикетонов, разработан прямой переход от солей пирилия к хлорзамещенным аналогам и ароил(хлор)фуранам.

3.2. Реакции дихлорпентендионов с сероводородом

в кислых средах

       Установив возможность сохранения атомов хлора при циклизации с кислотами 2,4-дихлорпентендионов 25а-г,  позволяющей получать дихлор-замещенные соли пирилия 73а-г, нами впервые предпринята попытка исследования их превращений в кислой среде.

       В результате изученной гетероциклизации дихлорпентендионов 25а-г выявлено, что в условиях известных циклизаций 1,5-дикетонов при действии хлорной кислоты видимых изменений не происходит. В связи с этим разработаны условия препаративного выделения солей 2,4,6-триарил-3-хлортиопирилия 78а-г (72-83%)        при нагревании субстратов в присутствии сероводорода и хлорной кислоты в смеси уксусной кислоты и уксусного ангидрида (3:1) при 40С.

Примечательно, что 1,3,5-трифенил-2-пентен-1,5-дион 1а при комнатной температуре в условиях описанной выше реакции превращается количественно в перхлорат 2,4,6-трифенилпирилия 14а, даже в присутствии в реакционной смеси сероводорода.

Более того, в отсутствии сильной кислоты, каковой является хлорная кислота, пентендион 1а в ледяной уксусной кислоте образует ацетат 2,4,6-трифенилпирилия 79а. Видимо, пентендионы, не содержащие атомов хлора в молекуле, являясь высокореакционноспособными соединениями, не взаимодействуют с H2S в условиях кислотного катализа вследствие  того, что скорость циклизации их на кислород значительно превышает скорость присоединения сероводорода.

Присоединение сероводорода по двойной связи диенола 80, возникающего при енолизации дихлорпентендиона 25, приводит к образованию аддукта 81.

Далее, как продукт внутримолекулярной атаки неподеленной пары электронов атома серы по электронодефицитному карбонильному углероду возникает интермедиат 82, при стабилизации которого в кислой среде за счет отщепления воды и хлорноватистой кислоты получается соль тиопирилия 78 с сохранением одного атома хлора в гетероцикле.

       

Таким образом, впервые показано, что 2,4-дихлор-2-пентен-1,5-дионы при действии сероводорода в условиях кислотного катализа способны к гетероциклизации с образованием нового типа солей 2,4,6-триарил-3-хлортиопирилия; реакция носит общий характер независимо от строения арильных заместителей в 1,3,5-положениях алифатической цепи 1,5-ди-кетонов.

3.3. Взаимодействие замещенных тиопиранов с хлором

Имеющиеся литературные данные свидетельствуют, что реакции тиопиранов с галогенами представлены единичными примерами и, как правило, идут многопланово. Учитывая ограниченное число исследований в этой области, а также возможность получения растворимых форм солей хлорзамещенного тиопирилия (хлоридов), способных к дальнейшей функционализации и проявлению биологической активности, нами проведено  изучение электрофильных превращений замещенных тиопиранов 83а,б в условиях реакций хлорирования. Таким путем впервые получены хлориды 2,4,6-трифенил-3-хлортиопирилия  84а и 2,4,6-трифенил-3-метил-5-хлортиопирилия 84б с выходом 22-43%.

Таким образом, в результате проведенных исследований разработаны два подхода к синтезу хлорзамещенных солей тиопирилия и получены ранее неизвестные монохлорзамещенные соли тиопирилия 79а-г, 84а,б гетеро-циклизацией дихлорпентендионов 25а-г и хлорированием тиопиранов 83а,б.

В целях направленного синтеза хлорзамещенных солей тиопирилия метод, основанный на реакции гетероциклизации дихлорпентендионов, является предпочтительней как в плане доступности исходных объектов, так и более высоких выходов целевых продуктов.

3.4. N-Гетероциклизация хлорзамещенных 2-пентен-, пентан-

1,5-дионов, их хлорзамещенных и конденсированных аналогов

       Азагетероциклы относятся к одному из наиболее важных классов гетероорганических соединений, среди которых ведется направленный поиск лекарственных препаратов. Располагая значительным набором O,S-содержа-щих гетероароматических соединений и изучив их биологическую активновсть, представлялось важным для получения сравнительной и целостной информации иметь в распоряжении их N-гетероаналоги.

Нами впервые установлено, что 1,3,5-триарил-2,4-дихлорпентендионы 25а-г, имеющие как электроноакцепторые, так и электронодонорные заместители, с аммиаком в диоксане, с ацетатом аммония в уксусной кислоте  претерпевают внутримолекулярную гетероциклизацию с образованием замещенных 3,5-дихлорпиридинов 85а-г с выходом 54-62 и 76-94%, соответственно.

Сравнительное изучение взаимодействия дихлорпентандионов 48,50,53-55 с аммиаком в аналогичных условиях показало принципиальную возможность синтеза  ароилпирролов 86а-д, выход которых составляет,  47-80 %. Реакция дикетонов 48,50,53,54 с ацетатом аммония в уксусной кислоте с достаточно  высокой селективностью протекает в направлении образования 3-хлорпиридинов 87а-г (выход 79-92%). В указанных условиях из 1,5-ди(4-хлорфенил)-2,4-дихлорпентан-1,5-диона 50 в качестве второго продукта удается выделить ароилпиррол 86б с выходом 8%, что подтверждает реализацию двух параллельных процессов.

Таким образом, установлено, что  в отличие от дихлорпентандионов 48,50,53-55, превращающихся под действием аммиака или ацетата аммония в монохлорзамещенные пиридины 87а-в,д и не содержащие хлора ароилпирролы 86а-д, дихлорпентендионы 25а-г с теми же реагентами дают только 3,5-дихлорпиридины 85а-г.

Сохранение только одного атома хлора в пиридиновом цикле соединений 87а-в,д позволяет предположить, что процесс пиридинизации дихлордикетонов 48,50,53,55  включает стадию дегидрохлорирования.

При нуклеофильном замещении атома хлора рост стерических затруднений является более значительным, так как вызван увеличением числа заместителей в непосредственной близости от реакционного центра. Поэтому атака нуклеофила – аммиака будет направлена, в первую очередь, на карбонильный атом углерода дихлордикетонов, а не на атом хлора, что приводит к образованию аддукта 88,  при дегидратации которого возникает таутомерная смесь имина 89 и енамина 90.  В молекулах енаминов дихлорпентандионов аминогруппа и атом хлора могут занимать различное пространственное положение относительно связи С1=С2, но цис-конфигурация менее устойчива из-за большей энергии 1,3-взаимодействия заместителей. Преимущественным направлением циклизации енамина 90 должно быть, видимо, образование пятичленного гетероцикла, т.к. вероятность сближения аминогруппы с атомом С4 значительно выше, чем с С5. В пользу этого утверждения свидетельствуют данные кинетических исследований процесса внутримолекулярной конденсации - галогенаминов:  скорость  образования  пирролидина  почти  в  60 раз превышает скорость  образования пиперидина. Очевидно, эта закономерность остается в силе и для енаминов дихлорпентандионов 48,50,53-55.

Принимая во внимание тот факт, что пентендионы 1а-г,з, являясь интермедиатами в реакциях солей пирилия 14а-г,з с нуклеофильными реагентами, легко подвергаются гетероциклизации под воздействием последних, образуя гетероциклические системы, нами разработаны условия прямого перехода солей пирилия в дихлорзамещенные пиридины 85а-г,з.

Одностадийный способ получения замещенных дихлорпиридинов 85а-г,з, защищенный авторским свидетельством, включает обработку солей пирилия 1а-г,з  спиртовым раствором ацетата натрия  при нагревании в тетрахлорметане (70С, 5 мин.) и насыщение реакционной смеси хлором при 20С в течение 2,5-3,0 часов., нагревание в смеси ацетата аммония в уксусной кислоте.

Описываемый способ позволяет получать замещенные 3,5-дихлорпиридины 85а-г,з препаративно. Используя данный метод нами получен ряд новых замещенных 3,5-дихлорпиридинов  85а-г,з, в том числе и 2,6-дитретбутил-4-фенил-3,5-дихлорпиридин 85з, синтез которого на основе дихлорпентендиона невозможен.

Принимая во внимание результаты настоящего исследования можно утверждать, что получение азотистых гетероциклов, содержащих атом хлора, является доступной задачей, включающей хлорирование 1,5-дикетонов с образованием дихлорзамещенных аналогов,  гетероциклизацию последних под действием аммиака и его производных. Таким образом, можно считать, что в препаративной органической химии найдены эффективные способы синтеза хлорпиридинов и ароилпирролов.

3.5 2-Пентен-1,5-дионы, их конденсированные аналоги в реакциях с бинуклеофильными реагентами

       Исследование поведения дихлорпентен- и пентандионов с аммиаком и ацетатом аммония позволили раскрыть новые аспекты реакционной способности 1,5-дикарбонильных соединений. В периодической печати описаны переходы пентендионов в замещенные пиразолины и изоксазолины под действием гидразина или гидроксиламина соответственно.

Осуществленное нами гидразинирование непредельных дикетонов 7a и 7б позволило расширить круг замещенных пиразолинов, содержащих биологически активный гидронафталин(он)овый фрагмент. Найдено, что дикетон 7a в способен образовывать смесь продуктов, состоящую из 2-(1,3-дифенилпропилиден-3-гидразон)-1,2,3,4-тетрагидронафталин-1-она 91а и его изомера 92а с суммарным выходом 30%. В меньшем количестве с выходом 15% получен 2-(3,5-дифенил-3,4-дигидро-2Н-пиразол-3-ил)-3,4-дигидро-нафталин-1-иламин 93а.

Гидразон  91а  нами  рассматривается  как интермедиат на пути синтеза

2-(3,5-дифенил-3,4-дигидро-2Н-пиразол-3-ил)-3,4-дигидронафталин-1-илами-на 93а, протекающего по нижеследующей схеме и сопровождающегося  внутримолекулярной нуклеофильной атакой аминогруппой по кратной связи 2-(1,3-дифенилпропилиден-3-гидразон)-1,2,3,4-тетрагидронафталин-1-она.

 

В случае непредельного дикетона 7б, реакция гидразинирования проходит по иному, отличному от вышеуказанного пути превращения механизму, что связано, вероятно, с меньшей реакционной способностью  ,–непредельного фрагмента дикетона вследствие электронодонорного влияния метоксифенильного заместителя, находящегося при С-1 алифатической цепи дикетона 7б. При взаимодействии пропилидентетрагидронафталинона 7б с гидразином получен 3-фенил-5-(4-метоксифенил)-6,7-дигидро-4Н-нафто[1,2-с][1,2]диазепин 94б.

Таким образом, впервые изучены реакции пропилиденонилтетра-гидронафталинонов с гидразингидратом. При этом показано, что в зависимости от характера заместителя при С-1 алифатической цепи дикетона имеет место внутримолекулярная гетероциклизация с участием ,-непредельного фрагмента субстрата, либо обеих карбонильных функций молекулы, что позволило перейти к новому типу замещенных пиразолов и конденсированным гетеросистемам диазепинового ряда; выделен интермедиат нуклеофильного превращения - гидразон 92а, позволяющий сделать вывод о вероятной схеме изученных реакций. Показано, что введение второй карбонильной группы, дополнительно к ,-непредельному фрагменту  в пятое положение и переход к 1,5-дикетонам от ,-не-предельных алифатических кетонов вносит свои особенности в формирование указанных выше гетероциклических соединений благодаря возникновению более активного реакционного центра для атаки нуклеофильного реагента.

3.6 N,N-и N,S-Циклизация арилзамещенных

дихлор-2-пентен- и дихлорпентан-1,5-дионов

Для введения двух гетероатомов в структуру гетероцикла на основе алифатических кетонов обычно используют бинуклеофильные реагенты. Известно, что 2-пентен-1,5-дионы с последними образуют пятичленные гетероциклы (Balaban A., Silman А). Осуществленные нами превращения 1,3,5-трифенил-2-пентен-1,5-диона 1а с гуанидином в присутствие этилата натрия позволили впервые получить шестичленные бигетероатомные 2-имино-4,6-дифенил-4-фенацил-1,3-дигидротиазин 95 и 2-имино-4,6-дифенил-4-фенацил-1,3-дигидротиазин 96.

Присоединение реагента 95 по карбонилу приводит к соединениям 97,98, находящимся в динамическом равновесии  вследствие возможной таутомерии. Присутствие активного центра– кратной связи в таутомере 180 предполагает взаимодействие с тиольной либо аминогруппой с образованием шестичленного цикла, содержащего два гетероатома в положении 1,3.

В результате исследования реакций непредельных и насыщенных хлорзамещенных 1,5-дикетонов 25а-г и 46-54 с тиомочевиной, метилтиомочевиной  и фенилтиомочевиной  установлено, что гладко взаимодействие с указанными реагентами протекает только с участием 2,4-дихлор-1,3,5-трифенил-2-пентен-1,5-диона 86а и 2,4-дихлорпентан-1,5-дионов  48-50, незамещенных в положении С-3. В этом случае образуются ди-(R-аминотиазолил)-метаны 99а-в, 100б, 101а-в с высокими выходами.

В отличие от дихлорпентандионов 48-51, образующих бисаминотиазолы 99а-в с тиомочевиной, при нагревании с последней 2,4-дихлор-1,3,5-трифенил-2-пентен-1,5-диона 25а в этаноле бис-продукт не образуется; возникает аминотиазол 102. ,-Непредельный фрагмент или малоподвижный атом хлора при двойной связи не принимают участия в реакции с тиомочевиной. В указанной реакции 2,4-дихлорпентендионы ведут себя аналогично 2,4-дихлорпентандионам с участием наиболее активных реакционных центров – карбонильной группы и галогена; дезактивированная атомом хлора кратная связь в противоположность таковой в рассмотренных выше незамещенных аналогах нереакционноспособна.

Таким образом, изучение нуклеофильных реакций рядов 2-пентен-1,5-дионов и хлорзамещенных аналогов, а также дихлорпентандионов позволило получить данные о связи особенностей их строения и химических свойств, разработать способы синтеза ранее практически малодоступных и недоступных гетероциклических соединений.

4. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ БИОЛОГИЧЕСКОЙ АКТИВНОСТИ ХЛОРЗАМЕЩЕННЫХ 1,5-ДИКЕТОНОВ И ПРОДУКТОВ ИХ ГЕТЕРОЦИКЛИЗАЦИИ

Выявление биологической активности проводилось в рядах синтезированных нами соединений: 1,5-дикетонов и их хлорзамещенных аналогов 1б, 25а, 27а, 48-54, 58, ароил(хлор)фуранов 69а-г, 74а-г,е, хлорзамещенных солей пирилия и тиопирилия  73а-г, 78а-г, 84а,б, хлорпиридинов 85а-г,з, 87а,в-д, ароилпирролов 86а-д, бисаминотиазолов 99а-в, 100б,101а-в.

4.1. Пестицидная активность

Изучение пестицидных свойств соединений 25а, 27а, 48-54, 58, 69а-г, 74а-г,е, 73а-г, 78а-г, 84а,б, 85а-г,з, 87а,в-д, 86а-д, 99а-в, 100б, 101а-в  проводилось ВНИИ химических средств защиты растений (г.Москва).

Гербицидное действие указанных веществ определялось в тепличных условиях на дерново-подзолистой почве на посевах овса, сои, гороха, горчицы, редиса при довсходовом и послевсходовом внесении.

2-Бензоил-5-фенилпиррол 86а при обработке в период вегетации подавляет рост всходов сорных растений на посевах овса на 80%, гороха – на 60%, горчицы – на 100% по сравнению с контролем, проявляя активность на уровне эталона -2-нитро-5-(4-трифторметил-2-хлорфенокси) бензоата натрия (блазер); 74а и 85д продемонстрировали среднюю активность по сравнению с эталоном. 

Фунгицидную активность полученных соединений в отношении подавления развития болезней растений определяли в условиях теплицы на растениях огурцов, томатов, бобов. Концентрация действующего вещества составляла при заражении огурцов мучнистой росой 0,05%, в остальных случаях (заражение томатов фитофторозом и бобов серой гнилью) – 0,15%. В указанных концентрациях высокой активностью обладает 2,6-ди-третбутил-4-фенил-3,5-дихлорпиридин 85з, подавляют рост мицелия  Xant. Malv. на 100%, среднюю активность проявляют 2-бензоил-3,5-дифенил-4-хлорфуран 74а, хлорид  2,4,6-трифенил-3-метил-5-хлортиопирилия 84б и ди(2-фениламино-4-фенилтиазолил-5)метан 101а. Активность остальных испытанных соединений в отношении возбудителей болезней невысока. Найдено также, что – 2,6-ди-третбутил-4-фенил-3,5-дихлорпиридин 85з –  высокоактивен в отношении серой гнили бобов на 92% ( что позволяет рекомендавать его как эффективный фунгицид), а 2-бензоил-3,5-дифенил-4-хлорфуран 74а и хлорид 2,4,6-трифенил-3-метил-5-хлортиопирилия 84б, подавляют развитие болезни мучнистой росы огурцов и фитофтороз томатов на ~57%.

4.2. Антимикробная активность

Активность синтезированных веществ в отношении микробов и фагов исследована на кафедре микробиологии СМУ. Антимикробную активность соединений определяли методом двукратных серийных разведений в бульоне Хоттингера с pH 7,2 в отношении стандартных тест-микробов: St. aureus 209, E. s. coli 675, Pr. vulgaris 477, Ps. aeruginosa 165 Cand. albicans 37. Возможность специфического ингибирования плазмидной лекарственной устойчивости изучали, сравнивая устойчивость к антибиотикам  E. coli j 53R-386, устойчивой к тетрациклину, левомицитину, ампициллину, в жидкой питательной среде, содержащей (контроль) различные концентрации антибиотиков.

Показана высокая активность хлорзамещенных солей тиопирилия в отношении  St. aureus 209 и Cand. Albic.. Установлено, что антимикробная активность соединения 84б распространяется как на граммположительные, так и на граммотрицательные микроорганизмы. Его активность в отношении указанных тест-микробов значительно выше, чем у стрептомицина (МИК составляет 0,1-1,56 мкг/мл). Таким образом,  2,4,6-трифенил-3-метил-5-хлортиопирилия 84б может быть отнесен к широкоспекторным антибиотикам (способ получения и активность защищены авторским свидетельством).

Высокая противостафилококковая активность соединения 84б подтверждена на 15 клинических штаммах. Большинство исследованных штаммов устойчиво к антибиотикам, тогда, как хлорид 84б проявляет высокую активность в их отношении. При определении чувствительности клинических штаммов не было обнаружено ни одного обладающего резистентностью к синтезированным нами соединениям.

Найдено, что хлорзамещенные соли пирилия, их S- и N-содержащие аналоги, ароилфраны проявляют умеренную антифаговую активность. Наиболее сильными инактиваторами фагов оказались хлорзамещенные пиридины и ароилфураны. Антифаговая активность этих соединений выше, чем у противоопухолевых антибиотиков рубомицина и блеомицина.

LD50 для белых мышей при однократном интраперитональном введении составляет 380-420 мг/кг массы.

Результаты биологических испытаний сведены в базе данных биологически активных соединений, синтезированных на кафедре органической и биоорганической химии Саратовского госуниверситета, и свидетельствуют о перспективности дальнейшего изучения указанных веществ как потенциальных химиотерапевтических средств.

ВЫВОДЫ

  1. Создано новое научное направление в области химии карбонильных соединений,  основой которого явилась разработка методов:  получения моно-, ди-, тригалогензамещенных пентен-, пентандионов и их конденсированных аналогов и субстратов; карбоциклизации в бициклононеноны; гетероциклизации  в пяти- , шести- и семичленные гетероциклические соединения - (хлорзамещенные) ароилфураны, -пирролы, пиразолы, тиазолы, соли пирилия , тиопирилия, пиридины,  диазепины.
  2. Впервые в результате систематического изучения основного гидролиза солей тетрагидро- и бензодигидро обнаружен ряд новых необычных превращений в бензодигидрохроменолы и бициклононенолоны.
  3. Предложен новый метод гидролиза солей пирилия и конденсированных аналогов в присутствии ацетата натрия на оксиде алюминия, позволяющего осуществить препаративный синтез 2-пентен-1,5-дионов,  2-(1,3-диарилпропилиден-3-он-1)циклогексан-1-онов,  2-(1,3-диарилпропи-лиден-3-он-1)тетрагидронафталин-1-онов.
  4. Показан общий характер хлорирования в рядах непредельных ациклических, полуциклических, в том числе бензаннелированных 1,5-дикетонов - пентендионов, пропилиденонилциклогексанонов, -тетрагидронафталинонов, протекающего как электрофильное присоединение хлора по двойной связи в алифатической цепи пентендионов и двойной связи енольных форм с последующим дегидрохлорированием интермедиатов.
  5. Наряду с общим характером галогенирования ациклических и полуциклических 1,5-диоксосоединений обнаружена специфика в их  поведении, обусловленная строением субстрата (бензаннелирование определяет преимущественное солеобразование), температурным режимом процесса, реагентом (селективное хлорирование, нестабильность бромзамещенных дикетонов и многоплановость превращений в бромиды пирилия, ароилфураны и ацетоксизамещенные пентендионы).
  6. Впервые предложено с использованием квантовохимических расчетов рассматривать механизм солеобразования в выбранных условиях галогенирования через полукетализацию, а не бромирование по кратной связи, как это ранее представлялось в периодической печати.
  7. Рассмотрены стереохимические аспекты реакции галогенирования. Установлено, что 2,4-дихлорпентендионы существуют преимущественно в виде Z-S-транс-изомеров, с заслоненной конформацией связей С=Cl и С=О.  Для их полуциклических насыщенных аналогов - преимущественно трео-конфигурация, трихлорзамещенных диоксосоединений реализуется транс-транс-конформация.
  8. Разработаны прямые переходы, закрепленные авторскими свидетельствами, от солей пирилия, бензодигидрохроменилия к хлорзамещенным пентен-, пентан-1,5-дионам и от солей пирилия к дихлорзамещенным аналогам и гетероаналогам (дихлорпиридинам).
  9. Найдено, что циклизация в кислых средах дихлорпентендионов 25а-г в отличие от пентендионов 1а-г проходит по двум направлениям: при участии карбонильных групп с образованием хлорзамещенного катиона пирилия, либо за счет карбонильной группы, сопряженной с двойной связью, и хлорметиленового фрагмента в ароилхлорфураны.
  10. Найдена принципиальная возможность образованиея 2-спиро-(3,5-

дифенил-2,3-дигидрофуран)-2'-(5',5'-диметилциклогексан-1',3'-диона)

в основной среде по не известному ранее для дигалогензамещенных

дикетонов направлению.

11.Разработаны два подхода к синтезу хлорзамещенных солей  тиопи-

рилия и получены ранее неизвестные монохлорзамещенные соли

тиопирилия гетероциклизацией дихлорпентендионов и хлориро-

ванием тиопиранов.

12. Установлено, что  в отличие от дихлорпентандионов, превращаю-

  щихся под действием аммиака или ацетата аммония в монохлор-

  замещенные пиридины и не содержащие хлора ароилпирролы,

  дихлорпентендионы с теми же реагентами дают только 3,5-дихлор-

  пиридины.

13. Изучено отношение пентен- и пентандионов, в том числе гало-

гензамещенных, к бинуклеофильным реагентам (гидразину,

тиомочевинам, гуанидину) и впервые получены N,N -содер-

жащие пяти-, семичленные гетероциклические соединения

-  пиразолы, тиазолы,  диазепины. Показано, что  направление

реакций определяется  активностью ,-непредельного фрагмента

  и нуклеофильностью реагента.

14. Найдены возможные направления практического использования

впервые синтезированных хлорзамещенных солей пирилия,

пиридинов, ароилфуранов и пирролов как высоко активных

пестицидных средств, 3-хлорзамещенного хлорида тиопирилия в

качестве антимикробного, антифагового препарата.

Основное содержание диссертации изложено в следующих работах:

1. Пчелинцева Н.В., Харченко В.Г., Кожевникова Н.И. Окислительное образование солей тиопирилия полизамещенными тиопиранами //ХГС. 1979. №4. С.562-568

2. Пчелинцева Н.В., Харченко В.Г., Кожевникова Н.И., Куликова Л.К.Синтез, противораковая и антифаговая активность полизамещенных перхлоратов тиопирилия // Хим.-фарм.журн. 1981. №4. С.40-45

3. Пчелинцева Н.В., Харченко В.Г., Чалая С.Н. Азагетероциклы на основе хлорзамещенных карбонильных соединений //Материалы IX симпозиума по химии гетероциклических соединений. Братислава, 1987. С.197.

4. Пчелинцева Н.В.,  Харченко В.Г., Казаринова Т.Д., Чалая С.Н., Мариничева Г.Е. Синтез и биологическая активность бензоилпирролов, хлорпиридинов и изоиндолов  // Материалы V конф.Федерации европейских химических обществ по гетероциклам в биоорганической химии. Прага, 1988. С.206.

5. Пчелинцева Н.В.,  Харченко В.Г., Чалая С.Н. Хлорзамещенные дикарбонильные соединения, стереохимические особенности и реакции // Материалы конференции «Синтез новых полициклических и гетероциклических соединений. Куйбышев, 1989. С.32

6. Пчелинцева Н.В.,  Харченко В.Г., Чалая, С.Н.Литвинов, О.В.Промоненков В.К.

Хлорпиридины и их производные в синтезе пестицидов // Материала конф. по химии и технологии пиридинсодержащих пестицидов. Черноголовка, 1989. С.97.

7. Пчелинцева Н.В.,  Харченко В.Г., Чалая С.Н.., Литвинов О.В.Хлорзамещенные гетероциклические соединения на основе дикетонов // Материалы Межреспубл.конф. по синтезу, фармакологии и клиническим аспектам новых психотропных и сердечно-сосудистых веществ. Волгоград, 1989. С.34.

8. Пчелинцева Н.В., Харченко В.Г., Губина Т.И., Маркова Л.И. Фураны и дикетоны – исходные реагенты в синтезе практически полезных веществ // Материалы Всесоюзного совещания по химическим реактивам. Ашхабад, 1989. С.62.

9. Пчелинцева Н.В.,  Харченко В.Г., Чалая С.Н., Литвинов О.В. Хлорзамещенные 1,5-дикетоны, синтез и реакции с нуклеофильными реагентами // Сб.Карбонильные соединения в синтезе гетероциклов. Саратов: Изд-во СГУ, 1989. С.34-36.

10. Пчелинцева Н.В.,  Харченко В.Г., Чалая С.Н. Синтез 2,4-дихлор-2-пентен-1,5-дионов //

ЖОрХ, 1990, Т.26, вып.9. С.1854-1856

11. Пчелинцева Н.В., Харченко В.Г., Чалая С.Н. Нуклеофильные реакции 2,4-дихлор-2-пентен-1,5-дионов // ЖОрХ, 1990.Т.26, вып.9. С.1904-1908.

12. Пчелинцева Н.В.,  Харченко В.Г., Чалая С.Н. Хлорзамещенные соли пирилия и ароилфураны на основе дихлорпентендионов // Материалы Всесоюзного совещания  по кислородсодержащим гетероциклам.. Краснодар, 1990.С. 168.

13. Пчелинцева Н.В., Харченко В.Г., Чалая С.Н., Литвинов О.В. Хлорзамещенные 1,5-дикетоны. Получение и свойства // Сб. Дикарбонильные соединения.Рига. 1991.С.24.

14. Пчелинцева Н.В.,  Харченко В.Г., Чалая С.Н., Литвинов О.В. Хлорзамещенные 1,5-дикетоны. Получение и свойства // Материалы V Всесоюзной конф. по химии азотсодержащих гетероциклических соединений. Черноголовка, 1991. С. 74.

15. Пчелинцева Н.В.,  Харченко В.Г., Чалая С.Н., Сорокин Н.Н. Стереохимические особенности дихлор-замещенных-2-пентен-1 , 5 – дионов // Материалы I Всесоюзной конф. по теоретической органической химии. Волгоград, 1991.С.31.

16. Пчелинцева Н.В.,  Харченко В.Г., Чалая С.Н., Литвинов О.В. О,N,S-содержащие гетероциклы - новые реагенты в органическом синтезе // Материалы Ш Регионального совещания республик Средней Азии и Казахстана по химическим реактивам.. Алма-ата, 1991. Т.1, Органические реагенты. С. 135.

17. Пчелинцева Н.В.,  Харченко В.Г., Чалая С.Н., Литвинов О.В.  Хлорсодержащие органические гетеро-циклические соединения  в органическом  синтезе // Материалы V семинара-совещания

потребителей и производителей по органическим реактивам. Ярмарка идей. Дилижан, 1991. С. 135.

18. Пчелинцева Н.В.,  Харченко В.Г., Чалая С.Н., Сорокин Н.Н. Стереохимические особенности арилзамещенных 2,4-дихлор-2-пентен-1,5-дионов // ЖОрХ. 1994. №4. С. 321-324

19. Пчелинцева Н.В.,  Харченко В.Г., Литвинов О.В. Особенности галогенирования пентан- и 2-пентен-1,5-дионов // Сб . Карбонильные соединения в синтезе гетероциклов. Саратов: Изд-во СГУ, 1996. С. 51

20. Пчелинцева Н.В.,  Николаева Е.А., Харченко В.Г.  О- и S-гетероциклизация  замещенных пентендионов // Сб . Карбонильные соединения в синтезе гетероциклов. Саратов: Изд-во СГУ, 1996. С. 49

21. Пчелинцева Н.В.,  Харченко В.Г Непредельные 1,5-дикетоны, их галогензамещенные - получение и использование в синтезе гетероциклов // ХГС. 1996. №10. С. 1299-1319

22. Пчелинцева Н.В.,  Харченко В.Г. Непредельные 1,5-дикетоны и их галогензамещенные Глава11 в книге «Химия 5,6-членных N,О-содержащих гетероциклов. С. 192-216. Под ред. проф. А.П.Кривенько. Изд-во Сарат.ун-та, 1997. 270с.

23. Пчелинцева Н.В.,  Харченко В.Г., Степанова Е.В., Николаева Е.А. Превращения замещенных 2-пентен-1,5-дионов с бромом //ЖОрХ. 1997. Т.ЗЗ. № 2. С. 29-33

24. Пчелинцева Н.В.,  Харченко В.Г. Способы получения 1,5-дикетоновУчеб.пособие.-Саратов: Изд-во Сарат.ун-та, 1997.-106с. ISBN 5-292-02096-6

25. Пчелинцева Н.В. Дихлорзамещенные 1,5-дикетоны в реакциях гетероциклизации // Сб.Новые достижения в органической химии. Саратов: Изд-во Сарат.ун-та, 1997. С. 44-45

26. Пчелинцева Н.В.,  Харченко В.Г.,Фивейская С.В.,Панин Г.И. Хлорсодержащие гетероциклические соединения – потенцииальные физиологически активные вещества в растениеводстве // Сб.научн. трудов международной научной конференции, посвященной Н.И.Вавилову. Саратов:Изд-во СХИ, 1997. Т.2. С.266-268

27 . Пчелинцева Н.В.,  Маркова Л.И., Губина Т.И., Древко Б.И. S(Se)-Содержащие гетероциклы на основе их кислородных аналогов Материалы Международной конф.  «Химия S,Se,Р-содержащих соединений. С.-Петербург, 1998. С. 307.

28. Пчелинцева Н.В., Харченко В.Г., Маркова Л.И. О,N,S,Se-Содержащие гетероциклы в органическом  синтезе // Материалы Всероссийской практической конф. по технологии органических соед.. Ярославль, 1998. С. 182.

29. Пчелинцева Н.В. Синтез биологически активных 3-хлорзамещенных гетероциклов на основе дихлорпентендионов // Сб.Химия для медицины и ветеринарии. Саратов: Изд-во СГУ, 1998. С. 161-163

30. Пчелинцева Н.В., Харченко В.Г. 1,5-Дикарбонильные соединения в органическом синтезе // Сб.науч.трудовХУI Менделеевского съезда по общей и прикладной химии. С-.Петербург, 1998.

С. 320-321

31. Пчелинцева Н.В., Харченко В.Г., Маркова Л.И., Сердюкова Т.Н., Коробочкина Н.Г. Отношение тиопиранов к галогенирующим агентам // Материалы XX Всероссийской конф. по химии и технологии органических соединений серы. Казань, 1999. С. 189.

32. Пчелинцева Н.В., Харченко В.Г., Маркова Л.И. 1,5-Дикетоны и оксо-1,5-дикетоны в реакциях внутримолекулярной карбоциклизации // ЖОрХ. 2000. Т.36, вып.7. С. 959-976

33. Пчелинцева Н.В., Харченко В.Г., Маркова Л.И., ФедотоваО.В. Кислородсодержащие гетероциклические соединения на основе 1,5-дикетонов // ЖОрХ. 2000. Т.36, вып.7. С. 1154-1174

34. Пчелинцева Н.В., Харченко В.Г., Маркова Л.И., Федотова О.В., Цимбаленко Д..А. Галогенирование 1,5-дикетонов // ХГС. 2003. № 2. С. 224-234

35. Пчелинцева Н.В., Харченко В.Г., Маркова Л.И., Федотова О.В. Реакции 1,5-дикетонов с аммиаком и его замещенными // ХГС. 2003. №.9. С. 1283-1304

36. Пчелинцева Н.В., Николаева Т.Г., Маркова Л.И., Сердюкова Т.Н., Харченко В.Г.Синтез и некоторые превращения моно- и бисконденсированных солей пирилия // Сб.научных трудов  «Карбонильные соединения в синтезе гетероциклов». Саратов: Научная книга, 2004. С.235-238.

37. 2-Пентен-1,5-дионы в синтезе галогензамещенных аналогов и О,S-гетероциклических соединений Глава в книге Федотовой О.В., Харченко В.Г. Биологически активные О,S,Se-содержащие  гетероорганические соединения (база данных).  Вып.2. С.40-41, 61-63, 75, 91-92, 116-118, 138-141 Саратов: Научная книга, 2004. 278с.

38. Пчелинцева Н.В., Мирочицкий В.В., Меньшова М.А, Маркова Л.И.        Изучение подвижности атома галогена в галогензамещенных ди- и трикетонах // Материалы V Всероссийской конференции молодых ученых «Современные проблемы теоретической и экспериментальной химии». Саратов: Изд-во «Научная книга», 2005.С.72-73

39. Пчелинцева Н.В., Колеватова Я.Г., Мирочицкий В.В., Маркова Л.И. Соли пирилия в синтезе галогензамещенных аналогов и  N,S-изологов // Сб.научных статей «Вопросы биологии, экологии, химии и методики обучения». Вып.8. Саратов: Изд-во «Научная книга», 2005. С.204-207

40. Пчелинцева Н.В., Меньшова М.А., Маркова Л.И. Рециклизация солей пирилия в пяти- и семичленные гетероциклы // Сб.научных статей «Вопросы биологии, экологии, химии и методики обучения». Вып.8. Саратов: Изд-во «Научная книга», 2005. С.203-205

41. Пчелинцева Н.В., Колеватова Я.Г., Федотова О.В.. Маркова Л.И. Синтез солей тетрагидрохромилия и особенности их поведения  в условиях щелочного гидролиза // Сб.научных статей «Органическая химия от Бутлерова и Бельштейна до современности». С.-Петербург: Изд-во «Эльзавир» 2006. С. 331-332

42. Пчелинцева Н.В., Меньшова М.А., Маркова Л.И., Мирочицкий В.В. Реакции 1,5-дикетонов и их галогензамещенных с моно- и бифункциональными азотистыми реагентами // Сб.научных статей «Органическая химия от Бутлерова и Бельштейна до современности». С.-Петербург: Изд-во «Эльзавир» 2006. С. 329-330

43. Пчелинцева Н.В.,  Буров А.М., Федотова О.В., Колеватова Я.Г. Внутримолекулярный перенос (ВПЗ) в солях бензогидрохромилия // Сб.научых статей «Фундаментальные и прикладные проблемы современной химии в исследованиях молодых ученых». Астрахань: Изд-во «Научная книга»,  2006. С.134-136

44. Пчелинцева Н.В., Колеватова Я.Г., Федотова О.В. Хлорзамещенные 1,5-дикетоны в синтезе бисаминотиазолов // Материалы IX научной школы-конференции по органической химии. Москва: Изд-во  «Эльзавир», 2006. С.195

45. Пчелинцева Н.В., Буров А.М., Федотова О.В. Щелочной гидролиз солей бензогидрохромилия –  эффективный метод синтеза конденсированных дигидрохроменолов // Материалы IX научной школы-конференции по органической химии. Москва: Изд-во  «Эльзавир», 2006. С. 94

46. Пчелинцева Н.В., Буров А.М., Федотова О.В., Колеватова Я.Г. Функционально замещенные соли пирилия и их конденсированные аналоги – перспективные реагенты в синтезе красителей // Материалы XIX Международной научно-технической конференции «Химические реактивы, реагенты и процессы малотоннажной химии «Реактив-2006». Уфа: Государственное изд-во научно-технической литературы «Реактив», 2006. С. 33-34

47. Пчелинцева Н.В., Колеватова Я.Г., Панин  Г.И., Меньшова М.А. Синтез и исследование 2-бензоил-3-(4-N,N-диметиламинофенил)-5-фенил-4-хлорфурана в качестве регулятора роста растений // Сб.научных статей «Вопросы биологии, экологии, химии и методики обучения», Вып.9. Саратов: Изд-во «Научная книга», 2006. С. 166-169

48. Пчелинцева Н.В., Маркова Л.И., Сердюкова Т.Н., Мирочицкий В.В., Колеватова Я.Г. Особенности превращений 2-пентен-1,5-дионов и оксо-1,5-дикетонов с пентахлоридом фосфора // Материалы  XVII Российской Молодежной научной конференции «Проблемы теоретической и экспериментальной химии» Екатеринбург 17-20 апреля 2007г. Екатеринбург: Изд-во Уральского ун-та, 2007. С. 284-285

49. Пчелинцева Н.В., Колеватова Я.Г. Хлорирование не-предельных бициклических мостиковых кетонов // Материалы III школа-семинара «Квантово-химические расчеты: структура и реакционная способность органических и неорганических молекул», Иваново, 14 марта 2007г. Иваново: Изд-во Ивановского гос.ун-та, 2007. С.104

50. Пчелинцева Н.В., Цимбаленко Д.А., Федотова О.В. Химия 1,5-дикетонов. I. Галогенирование 2-пентен-, пентан-1,5-дионов и конденсированных аналогов // ЖОрХ.2007.Т.43, №9. С.1292-1296

51. Пчелинцева Н.В., Колеватова Я.Г., Федотова О.В. Новые пути образования и реакционная способность бицикло[3.3.1]нон-2-ен-9-онов // Материалы XVIII Менделеевского съезда по общей и прикладной химии. Т.5. 2007. С. 216 

52. Пчелинцева Н.В., Колеватова Я.Г., Меньшова М.А., Телятникова О.Н. Хлорирование тетразамещенных 2-пентен-  и пентан-1.5-дионов // Сб.научных статей «Вопросы биологии, экологии, химии и методики обучения», Вып.10. Саратов: Изд-во «Научная книга», 2008. С. 172-173

53. Пчелинцева Н.В., Колеватова Я.Г., Меньшова М.А. Взаимодействие 1,3,5-трифенил-2-пентен-1,5-диона с тиомочевиной и гуанидином // Сб.научных статей «Вопросы биологии, экологии, химии и методики обучения», Вып.10. Саратов: Изд-во «Научная книга», 2008. С. 173-175

54. Пчелинцева Н.В. Особенности гетероциклизации дихлорпентен- и дихлорпентан- 1,5-ди-онов с нуклеофильными реагентами. // Известия Саратовского университета. 2008. Т.8. Выпуск 1. С.

55. Пчелинцева Н.В., Маркова Л.И., Колеватова Я.Г., Меньшова М.А., Самарский М.В. Об особенностях О-циклизации ,'-ди-хлорзамещенных 1,5-дикетонов // Материалы XVIII Российской молодежной научной конференции «Проблемы теоретической и экспериментальной химии», Екатеринбург 23-25 апреля 2008 г.

56. Пчелинцева Н.В.,  Маркова Л.И., Самарский М.В., Меньшова М.А., Колеватова Я.Г. Синтез и биологическая активность 1,5-дикетонов семи- и бициклических рядов // Материалы XI Международной научно-технической конференции «Перспективы развития химии и практического применения алициклических соединений», Волгоград 26-28 мая 2008

57. Пчелинцева Н.В., Федотова О.В., Колеватова Я.Г. Антимикробные мембранопротекционные свойства хлорзамещенных 1,5- и 1,6-дикетонов // Сб.научных статей «Пути и формы совершенствования фармацевтического образования. Создание новых физиологически активных веществ». Воронеж: Изд-во Воронежск. ун-та, 2007. С.

58. Пчелинцева Н.В., Колеватова Я.Г., Маркова Л.И., Федотова О.В., Решетов П.В. Химия 1,5-дикетонов. II. Особенности превращений семициклических 1,5-дикетонов в кислых средах //ЖОрХ. 2007. Рег.№ 260 от 06.10.2007

59. Пчелинцева Н.В., Федотова О.В., Колеватова Я.Г., Буров А.М., Меньшова М.А. Химия 1,5-дикетонов. III. Новый подход к синтезу непредельных 1,5-дикетонов // ЖОрХ. 2008. Рег.№ 46-2008

60. Пчелинцева Н.В., Харченко В.Г., Монахова И.С., Шуб Г.М., Маркова Л.И. 9-[2-Бис(2-хлор-этил)аминоэтил-тио-2-R1,4-R2-1]-тиабицикло(4.4.0)-2-ены, проявляющие фагоцидную и антимикробную активность. А.С. № 665741 СССР от 01.12.76

61. Пчелинцева Н.В., Харченко В.Г., Чалая С.Н., Куликова Л.К. Хлориды замещенного тиапирилия, обладающие антимикробной активностью и способ их получения А.С. №1372893 СССР от 24.03.86

62. Пчелинцева Н.В., Харченко В.Г., Чалая С.Н. Способ получения 3,5-дихлорпиридинов

А.С.№ 1557968 СССР от 16.07.90.

63. Пчелинцева Н.В., Харченко В.Г., Чалая С.Н. Способ получения дихлорзамещенных 2-пентен-1,5-дионов А.С.№ 643521 СССР от 10.03.91.

64. Пчелинцева Н.В.,  Харченко В.Г., Чалая С.Н. Способ получения дихлорзамещенных солей пирилия А.С. № 1671661 СССР от 15.12.91

 



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.