WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


 

На правах рукописи

Потанин Михаил Борисович

МОРФОЛОГИЧЕСКАЯ

ВАРИАБЕЛЬНОСТЬ ГИПОТАЛАМУСА

В ОБЕСПЕЧЕНИИ КОНСТИТУЦИОНАЛЬНОЙ СТРЕСС-РЕАКТИВНОСТИ

(экспериментальное исследование)

03.00.25 – гистология, цитология, клеточная биология

Автореферат

диссертации на соискание ученой степени

доктора медицинских наук

Волгоград  -  2008

Работа  выполнена  в  ГОУ ВПО  «Волгоградский  государственный медицинский университет Росздрава»

Научный консультант: доктор  медицинских  наук, профессор Капитонова Марина Юрьевна 


Официальные оппоненты:

доктор  медицинских  наук, профессор  Хлопонин Петр Андреевич

доктор  медицинских  наук, профессор  Швалев Вадим Николаевич 

доктор  медицинских  наук, профессор  Ямщиков Николай Васильевич 

 


Ведущая организация:  ГОУ ВПО «Московская медицинская академия 

  им. И.М.Сеченова Росздрава»


Защита  состоится «_____» _________________ 2008 года в _____ часов на заседании диссертационного Совета Д 208.008.01 при Волгоградском государственном медицинском университете по адресу: 400131, г. Волгоград, пл. Павших борцов, 1.

С диссертацией можно ознакомиться в фундаментальной библиотеке Волгоградского государственного медицинского университета.

Автореферат разослан «___» ___________ 2008 года.

Ученый секретарь

диссертационного Совета,

доктор медицинских наук Н.В. Григорьева



ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ



Актуальность.

Стремительно нарастающий темп урбанической жизни, информационная перегрузка, скученность населения, возрастающая роль фактора общения в обеспечении социального статуса, нарастание доли ксенобиотиков в питании и окружающей бытовой среде современного человека – вот далеко не полный перечень факторов, определяющих возрастание роли стресса в патологии [Селье Г., 1960, 1982; Судаков К.В., 1997, 2002; Крыжановский Г.Н., 1999, 2004; Пшенникова М.Г., 2001; Вашадзе Ш.В., 2006; Глазачев О.С., 2006; Oliver G., Wardle J., 1999; Bell M.E. et al., 2002; Sivukhina E.V. et al., 2006; Gibson L.E., 2006].

С момента публикации Г.Селье в 1936 году статьи «Синдром, вызываемый разными повреждающими агентами», теория стресса прочно вошла в арсенал медицины. На настоящий момент в теории стресса раскрыто немало клеточных и молекулярных механизмов, определяющих его основную динамику и органопатологию, как в остром, так и хроническом варианте развития стрессорной реакции. Определен спектр стресс-активирующих и лимитирующих медиаторов, а также ульцирогенные, кардиотропные, иммуномодулирующие, эндокринные и поведенческие эффекты развития стрессорных реакций [Малышев И.Ю., Манухина Е.Б., 1998; Котов А.В., 1999; Судаков К.В., 2003; Devries A.C., et al., 1997; Berridge M.J., et al., 1998; Hamano H., et al., 2002; Dube L, et al., 2005; Wu Y.H. et al., 2006; Stone EA, et al., 2006; McCormick CM, et al., 2007].

В то же время, даже при ярко выраженных социальных и природных катастрофах тяжесть стрессорной реакции становится фатальной и определяет течение и прогноз болезней лишь примерно у трети лиц, в то время как примерно 20-25% людей при воздействиях тех же факторов практически не реализуют стресс-индуцированную патологию [Анохина И.П., 1997, 2002; Бадыштов Б.А., 1998; Соколова Е.Б., с соавт., 2000; Судаков К.В., Юматов Е.А., 2001; Bremner J.D., et al., 1996; Kelley A.E., Berridge K.C., 2002; Pecoraro N., et al., 2004; Dallman M.F., et al., 2005]. Изучение этой проблемы можно проводить с различных позиций. Сейчас уже известно немало генетических особенностей, определяющих уровень реактивности при стрессе и чувствительности к действию стрессорных факторов, причем два этих свойства не могут рассматриваться как полностью генетически сопряженные [Середенин С.Б., с соавт., 2000; Анохин К.В., Судаков К.В., 2003; Маркина Н.В., с соавт., 2003; Bartolomucci A., et al., 2003; Simpkiss J.L., Devine D.P., 2003; McGill, et al., 2006; Centeno M.L. et al., 2007; Goto S., et al., 2007; Ulrich-Lai Y.M. et al., 2007].

Помимо генетической детерминированности, одну из составляющих стресс-реактивности следует искать в морфофункциональных особенностях основных структур, отвечающих за регуляцию отношений организма с внешней средой в целом – прежде всего в организации церебральных структур [Пшенникова М.Г., с соавт., 2000; Yehuda R., et al., 1991; Avishai-Eliner S., et al., 2001; Morin SM, et al., 2001; Krady J.K., et al., 2002; Bluthe R.M., et al., 2002; Figueiredo H.F. et al., 2003; Inoue K., et al., 2003; Dallman M.F., et al., 2004; Badowska-Szalewska E., et al., 2006; Girotti M., et al., 2006].

Отечественными исследователями были раскрыты фундаментальные закономерности организации различных структур головного мозга при конституциональных фенотипах, связанных с высоким риском таких распространенных заболеваний как ишемическая болезнь сердца и алкоголизм. Расширены представления о структурных основах реагирования головного мозга на стресс, определяющих общую неспецифическую реактивность организма и, в итоге, нейроиммуно-эндокринные взаимодействия и органопатологию стрессовой реакции [Писарев В.Б. с соавт., 1990, 2006; Баннов А.Н., 1994; Ерофеев А.Ю., 1995; Смирнов А.В., 1998, 2005; Гуров Д.Ю., 1999, 2005; Фролов В.И., 2004; Капитонова М.Ю. с соавт., 2005, 2007; Морозова З.Ч., 2006; Загребин В.Л., 2007].

За рубежом многими учеными также демонстрировалась важная роль гипоталамуса в акцепции, трансформации и регулировании силы ответной реакции на стрессовые воздействия [Calogero A.E., 1995; Stratakis C.A., Chrousos G.P., 1998; Thompson R.H., Swanson L.W., 2003; Okere C.O., Waterhouse B.D., 2004; Kwon M.S., et al., 2006; Ostrander M.M., et al., 2006; Muramatsu T., et al., 2006; Kiss A., 2007; Lowry C.A., et al., 2007].

За рамками этих исследований осталась такая теоретически и практически важная проблема, как определение особенностей стресс-ассоциированных изменений в тех или иных структурах гипоталамуса у животных с доказанной высокой или низкой стресс-реактивностью. Равно не изучались в сравнительном аспекте изменения этих структур при его воспроизведении у животных с диаметрально противоположными уровнями стресс-реактивности.

Получение новых данных в нейроморфологии на современном этапе немыслимо без сопоставления результатов классических методов светооптического исследования, иммуногистохимического выявления специфических молекул-участниц работы головного мозга и данных электронной микроскопии нейронов, нейроглии и других элементов нейронного окружения [Боголепов Н.Н., 2002; Николлс Дж.Г., с соавт., 2003; Ахмадеев А.В., Калимуллина Л.Б., 2007; Bonini P., et al., 2004; Gingerich S., Krukoff T.L., et al., 2006; Muramatsu T., et al., 2006; Block M.L., et al., 2007; Ma S., et al., 2007]. С теоретических позиций рассмотрение структур мозга как гистотопографически очерченных ядер и проводников, выделение нейронных модулей и изучение межклеточных отношений в мозге следует рассматривать как взаимодополняющие при выполнении подобного исследования.

С этих позиций актуальным представляется фундаментальное морфофункциональное исследование гипоталамуса как одной из ключевых структур в обеспечении конституционально различной стресс-реактивности.


Цель работы – установить закономерности варьирования отдельных гипоталамических структур у животных с различным уровнем конституциональной стресс-реактивности и уточнить на этой основе участие гипоталамуса в обеспечении силы и выраженности стрессорной реакции.

Задачи исследования.

1. Изучить морфофункциональные различия отдельных ядер и полей гипоталамуса у животных с высокой и низкой стресс-реактивностью.

2. Изучить на иммуногистохимическом и ультрамикроскопическом уровне особенности строения нейронов ядер гипоталамуса, наиболее различающихся у животных с высокой и низкой стресс-реактивностью.

3. Выявить характер и выраженность стресс-индуцированных изменений в ядрах гипоталамуса, наиболее различающихся у животных с высокой и низкой стресс-реактивностью.

4. Провести корреляционный анализ связей между показателями стресс-реактивности и морфометрии  различных структур гипоталамуса.

5. Провести корреляционный анализ связей между показателями стресс-реактивности и стрессорных изменений в гипоталамусе и разработать математическую модель, характеризующую выраженность и характер стрессорных реакций с учетом стресс-реактивности и особенностей строения гипоталамуса на светооптическом и ультрамикроскопическом уровне.


Научная новизна.

На основании сопоставления результатов светооптического, иммуногистохимического, ультрамикроскопического методов исследования и привлечения методов современного математического анализа результатов морфометрии и определения стресс-реактивности получены новые данные о выделении ядер и полей гипоталамуса, наиболее значимых с позиции формирования конституциональной стресс-реактивности. К ним, помимо общепризнанных, впервые отнесены дорсомедиальное ядро, латеральное гипоталамическое поле и два ядра маммилярного комплекса. Показано, что нейроны разных ядер, участвующих в формировании стресс-реактивности, обладают общим ультрамикроскопическим признаком – сравнительно более высоким удельным объемом митохондрий в перикарионах и их более функционально активной организацией. Выявлены как стойкие признаки строения ядер гипоталамуса у животных с высокой стресс-реактивностью: более плотная упаковка нейронов при относительно малом количестве граничных сосудов и астроглиоцитов, относительно больший процент катехоламинергических и глутаматцептивных нейронов.

Показаны различия в краниокаудальных и дорсовентральных градиентах строения ядер и полей гипоталамуса как отражения различной конституциональной стресс-реактивности животных.

На основе полученных данных была сформирована теоретическая концепция о фенотипической вариабельности гипоталамуса, которая может рассматриваться как ключевой морфофункциональный субстрат стресс-реактивности. Это подтверждено данными математического анализа с построением адекватной модели взаимоотношений стрессорной афферентации, взаимоотношений между ядрами гипоталамуса с учетом их конституциональных особенностей и параметров последующего стрессорного ответа.

Научно-практическая значимость.

Полученные данные расширяют имеющиеся представления о структурных основах стрессорной реакции с позиции конституциональной нейроморфологии. Выделение компонента вариабельности в участии отдельных структур гипоталамуса за счет особенностей их строения в итоге существенно проясняет общие различия в выраженности стрессорного ответа у различных организмов на идентичные по характеру и силе воздействия.

Моделирование стресса у животных с конституционально высокой стресс-реактивностью целесообразно для получения наиболее ранней и полной картины стресс-индуцированной патологии при воздействии стрессоров любой силы, в том числе умеренной.

Положения, выносимые на защиту.

1. На ультраструктурном, клеточном и тканевом уровне ядра и поля гипоталамуса (каждое – в разной степени) обладают широкой вариабельностью строения, при этом можно выделить устойчивые наборы признаков, свойственных животным с конституционально высокой и низкой стресс-реактивностью.

2.Особенности исходного строения отдельных ядер и полей гипоталамуса у животных с различной стресс-реактивностью частично определяет характер и выраженность последующих стресс-индуцированных  изменений в этих структурах.

3. Особенности строения гипоталамуса и происходящих в нем при стрессе изменений, в свою очередь, определяют общую выраженность и течение стрессорной реакции.




Апробация работы и публикации.

Основные результаты диссертационного исследования докладывались и обсуждались научных сессиях профессорско-преподавательского состава Волгоградского государственного медицинского университета (Волгоград, 1998-2006), на III Российском конгрессе по патофизиологии  (Москва,  2004), III Всероссийской научно-практической конференции «Медико-биологические и психолого-педагогические аспекты адаптации человека» (Волгоград, 2004), VII конгрессе Международной ассоциации морфологов (Казань, 2004), V съезде физиологов Сибири (Новосибирск, 2005); Международном конгрессе «Проблемы вегетативной дисрегуляции» (Донецк, 2005); Российской научной конференции с международным участием «Медико-биологические аспекты мультифакториальной патологии» (Курск, 2006); Всероссийской конференции «Новые медицинские технологии» (Волгоград, 2007).

Апробация работы осуществлена на совместном заседании кафедр  гистологии, цитологии и эмбриологии, патологической анатомии, анатомии человека, судебной медицины Волгоградского государственного медицинского университета 25 апреля 2008 года.

По материалам диссертации опубликованы 26 научных работ, в том числе 9 - в журналах «Морфология», «Морфологические ведомости», «Бюллетень экспериментальной биологии и медицины» и «Вестник Волгоградского государственного медицинского университета», включенных в действующий «Перечень … ВАК» (медицинские науки, редакция апрель 2008). 

Реализация и внедрение результатов исследования.

Материалы диссертации внедрены в учебный процесс в Волгоградском государственном медицинском университете, Волгоградском государственном университете, Волгоградской государственной академии физической культуры, Саратовском государственном медицинском университете, Ставропольской государственной медицинской академии, Астраханской государственной медицинской академии. Разработанные и апробированные диагностические методики используются Волгоградского областного патолого-анатомического бюро и Волгоградского научного центра РАМН и администрации Волгоградской области.

Структура и объем диссертации.

Диссертация изложена на 269 страницах машинописного текста, содержит 50 таблиц, иллюстрирована 62 рисунками. Она состоит из введения, обзора литературы, описания материала и методов исследования, трех глав собственных исследований с их обсуждением, заключения и выводов. Список использованной литературы включает в себя 370 источников: 147 отечественных и 233 зарубежных.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ


Специфика настоящего исследования потребовала решения нескольких методических задач:

- максимально адекватного выделения животных с доказанными конституциональными особенностями стресс-реактивности без повреждения головного мозга;

- выделение из большого числа нейроморфологических методик доступного и воспроизводимого набора, на основании которого можно описать различия в строении гипоталамуса у выбранных животных с альтернативной стресс-реактивностью;

- выбора метода и интенсивности стрессорного повреждения, при котором уже имеется морфологический субстрат повреждения гипоталамуса, но еще не утрачена его относительная специфичность, позволяющая количественно оценивать различия между группами;

- выбор адекватного математического подхода для описания происходящих событий в виде модели, пригодной для интерпретации выявленных изменений морфологами.

Протокол экспериментов в разделах выбора, содержания животных, моделирования патологических процессов и выведения их из опыта был составлен на основе базисных нормативных документов МЗ РФ, рекомендациями ВОЗ [Червонская Г. П., с соавт., 1998; Zutphen L.F., 1993] и согласован с Локальным независимым этическим комитетом  (Протокол №4 от 21 декабря 2004 года).

На основании изложенных принципов после скрининга в основной части работы было проведено сравнительное изучение головного мозга у 20 крыс: по пять в каждой подгруппе в зависимости от стресс-реактивности, вне стресса и после его воспроизведения (табл. 1).

Таблица 1

Общая характеристика материала исследования по сериям

Серии экспериментов

Характеристика серии

Кол-во животных

Скрининговый этап (неинвазивные тесты)

определение уровня

общей неспецифической

реактивности организма

низкий уровень

18

средний уровень 

91

высокий уровень

15

определение уровня

хемоиндуцированной

стресс-реактивности

низкий уровень

20

средний уровень

82

высокий уровень

22

Основной этап

интактные

животные

высокая реактивность

5

низкая реактивность

5

Моделирование 24-часового

иммобилизационного стресса

высокая реактивность

5

низкая реактивность

5

Первым тестом для разделения животных на группы было определение универсального критерия стандартизации биомоделей - уровня общей неспецифической реактивности организма. Метод основан на  определении болевой (ноцицептивной) чувствительности посредством дозированного электроболевого воздействия [Мулик А.Б., 1993, 2002]. Вторым относительно малоинвазивным тестом стало определение термолабильности животных при действии сверхмалых доз бактериального липополисахарида. Для такого свойства организма предложено соответствующее название - уровень хемоиндуцированной стресс-реактивности [Горизонтов П.Д., 1984]. В результате этого тестирования для исследования было выделено 20 крыс с низким и 22 – с высоким  уровнем реактивности.

Сопоставление сочетаемости тестов (конкордантности) показало, что среди 21 животного  хотя бы с одним из признаков низкой реактивности у 17 (74%) присутствовали оба признака. Аналогично, среди 22 животных с высоким уровнем хемоиндуцированной стресс-реактивности оказались все 15 животных с высоким уровнем общей неспецифической реактивности организма (конкордантность – 68%).

Для исследования гипоталамуса интактных животных и после воспроизведения стресса из каждой группы крыс отобрано по 10 животных с максимальной экспрессией признаков, то есть минимальным порогом электроболевой вокализации и максимальной термолабильностью – для группы животных с высокой стресс-реактивностью (ВСР) и альтернативными характеристиками – для группы крыс с низкой стресс-реактивностью (НСР).

Стресс моделировали у 5 крыс группы ВСР и у 5 крыс групп НСР путем однократной 24-часовой иммобилизации. С целью верификации стадии стресса проводилось взвешивание органов животных, макро- и микроскопическое исследование желудочно-кишечного тракта, тимуса и надпочечников.

Непосредственно после эвтаназии головной мозг животных извлекали щадящим образом из черепа, помещали в 10%-ный раствор нейтрального забуференного формалина (рН=7,4) на 30 мин, после чего разделяли на 3 блока (А, В и С) фронтальной секцией через точку P0 по Сентаготаи и тангенциальной – от борозды, разделяющей полушария большого мозга и мозжечка до границы между стволом и промежуточным мозгом на вентральной его поверхности. Материал дофиксировали в течение 24 ч. С фронтальной поверхности блока В и окципитальной поверхности блока А начинали приготовление серийных срезов толщиной 5-7 микрон – 200-240 для блока В и 100-150 – для блока А. Каждый пятый срез наклеивали на предметные стекла в порядке их получения и маркировали. Это позволяло воспроизвести стререометрическую архитектонику гипоталамуса от фронта А1 до Р4,0 в координатах Хорслей-Кларка, то есть целиком [Paxinos G., Watson C., 1986]. Для уточнения расположения ряда объектов и идентификации срезов вне типичных проекций использовали также современные атласы промежуточного мозга: Н.Н. Боголепова с соавт. (2002), Paxinos G., Watson C. (1996) и Swanson L.W. (1998).

Передняя гипоталамическая область была нами объединена с иногда описываемой отдельно преоптической областью. В ней выделяли и отдельно изучали строение медиального (POM) и латерального преоптических (POL), перивентрикулярного (PeV), переднего гипоталамического (NAH), супраоптического (SO), супрахиазматического (SCh) и паравентрикулярного (PV) ядер. Помимо ядер, здесь присутствовали и проводники, описанные как элементы нейропиля по различным направлениям и смешанные области, в частности - ретрохиазмалъная (RCA).

В медиальной группе основу вещества гипоталамуса составляли крупные дорсомедиальное (DM) и вентромедиальное (VM) и аркуатное (Arc) ядра. В первом различали дорсальную и вентральную части.  Особеннностью этой области было обилие вертикальных и горизонтальных проводников, формирующих в нейропиле ассоциативные связи с другими элементами стресс-системы.

Латеральное гипоталамическое ядро (LH) и серый бугор, составляющие наружную группу ядер гипоталамуса, были представлены скоплениями неплотно расположенных нейронов средних размеров с достаточно большим количеством астроглии и микроглии между ними. Большая масса нейропиля в этой области позволила рассматривать эту зону как единое латеральное гипоталамическое поле (AHL), простирающееся во фронтальных срезах в координатах P1,5-P3,0.

Элементы маммилярного комплекса, то есть заднего гипоталамуса, обнаруживали в сечениях Р3,0 – P4,5 по Сентаготаи и идентифицировали как супрамаммилярное ядро (SuM), дорсальная (PMd) и вентральная (PMv) части премаммилярных ядер, латеральное маммилярное ядро (ML), медиальная (MMm) и латеральная (MMl) части медиального маммилярного ядра. В связи с достаточно однородным строением и непостоянством выявления MMl у крыс последние два объекта были подвергнуты анализу совместно. Среди большого количества проводников в задней гипоталамической области большое внимание уделяли мощному восходящему маммило-таламическому тракту.

Для классического нейрогистологического исследования использовали окрашивание препаратов мозга гематоксилином и эозином, а также по Нисслю.

Морфометрическое исследование было проведено в соответствии с принципами системного количественного анализа [Автандилов Г.Г., 1996, 2002] с использованием автоматического анализатора изображений «Видеотест-Морфо» (СПб, Россия). В каждом ядре раздельно определяли объемную долю нейронов (%), среднее число нейронов в 1 мм3 ткани, средние объемы (СО) перикариона нейронов и нейронного окружения (мкм3), их отношение, а также среднее число граничных нейронов и астроглиоцитов в окружении перикариона нейрона. Выраженность глиальной реакции оценивали по среднему численному соотношению глия/нейрон, среднему размеру ядер глиоцитов и средней суммарной яркости иммунопозитивного материала после окраски на макрофагальный антиген и кислый глиальный протеин.

Результаты при исследовании областей, наиболее «актуальных» по результатам предшествующего анализа, дополняли с помощью оригинального метода радиальной морфометрии, разработанного в Волгоградском научном центре РАМН. После указания границ объекта и его логического центра (им был выбран геометрический центр ядра) программа самостоятельно разбивала объект на выбранное число секторов и зон. Для нейронов нами было эмпирически подобрано 36 секторов и 10 зон – всего 360 участков (рис. 2).  В качестве первичного материала получали матрицу секторального и радиального распределения тинкториальной плотности, в качестве окончательного – коэффициенты, характеризующие графическую функцию распределения:

K1  тангенс угла подъема кривой в восходящей части графика,





K тангенс угла снижения кривой в восходящей части графика,

Im максимальная интенсивность окраски в кольцевой зоне, усл. ед.,

R расстояние от центра ядрышка до зоны с Im

Vm максимальная вариабельность интенсивности по секторам, усл. ед.

Полученные количественные показатели достаточно полно характеризуют изменения нейронов в динамике повреждения [Новочадов В.В., 2005].

На срезах, окрашенных по Нисслю, определяли степень стрессорного поражения нейронов [Чубинидзе А. И., 1972]. Производился подсчет нейронов коры, которые разделили на 4 группы:

- нейроны нормальные, неизмененные (НН);

- слабоизмененные нейроны (СН) с сохранением ядра, но со структурными или тинкториальными нарушениями компонентов цитоплазмы (острое набухание, гиперхроматоз, хроматолиз, центральная тинкториальная ацидофилия);

- грубо измененные нейроны (ГН) (сморщивание, «тяжелое изменение», гомогенизирующее изменение нейронов, клетки-тени);

- нейроны отсутствующие (ОН).

Степень поражения нейронов вычисляли по формуле: СП=(2ОН+2ГН+СН)x100/2(ГН+ОН+СН+НН) и выражали в процентах. Выделяли 4 степени поражения: легкая (менее 20%),  средняя (20-50%), тяжелая (более 50%), распространенный некроз. Исследование проводили в 5 полях зрения на 4 срезах для каждой области ГМ (100-120 измерений на серию).

Иммуногистохимическое исследование производили с использованием следующих моноклональных мышиных антител коммерческими наборами фирмы Dako Cytomation (Дания):

- к макрофагальному антигену, окрашивающий микроглию (HAM-56);

- к кислому глиальному протеину (GFAP);

- к тирозингидроксилазе (TH)

- к глутаматному рецептору (GR-2)

- к нейрональной нитроксидсинтазе (NOS-1);

- к эндотелиальной нитроксидсинтазе (NOS-3).

Выбор двух последних антигенов был обусловлен тем, что по современными данным, именно дисбаланс нитроксидсинтаз становится ключевым стартовым механизмом повреждений в центральной нервной системе при стрессе [Han H.S.,et al., 2002; Kotake Y., et al. 2002].

Визуализацию проводили с помощью непрямого иммунопероксидазного метода с высокотемпературной и ферментной демаскировкой антигенов. Экспрессию оценивали по разделению нейронов на классы в зависимости от степени экспрессии иммунопозитивного материала по оптической плотности выделенных масок: негативные, слабопозитивные, позитивные и гиперэкспрессирующие  с выражением доли каждого класса в процентах.  Соотношение экспрессий определяли через их удельные яркости в сопоставимых областях ГМ на серийных срезах, обработанных на одном предметном стекле. Для достоверности полученных результатов применяли позитивные и негативные контроли антигенов, а также негативные контроли антител [Петров С.В., Райхлин Н.Т., 2004; Kelman Z., 1997; Rosa M.A., et al. 2000; Paunesku T. et al., 2001].

Для электронно-микроскопического исследования животных подвергли эвтаназии путем внутривенной инфузии 4%-ного раствора параформа на 0,1 М какодилатном буфере (суправитальной фиксации) под нембуталовым наркозом. Дофиксацию кусочков размером 1 мм3 производили в течение 12 часов в 4%-ном растворе параформа на 0,1М какодилатном буфере с последующей постфиксацией в течение 2 часов в 1% растворе тетраокиси осмия в 0,1М какодилатном буфере (pH=7,4) при температуре +4оС [12]. После промывки в нескольких порциях раствора какодилатного буфера материал подвергали дегидратации в спиртах возрастающей концентрации и заливали в смесь эпона и аралдита. Ультратонкие срезы толщиной 50-90 нм получали на ультрамикротомах LKB- 8800 и монтировали на медные сетки. После контрастирования в 2,5% растворе уранилацетата на 50о этаноле в течение 40 минут и 0,3 % растворе цитрата свинца в течение 20 минут срезы изучались в электронном микроскопе Tesla BS-540 при ускоряющем напряжении 60 кВ. Документирование производили с использованием фотопластинок «Для ядерных исследований». Электронные микрофотограммы изготавливали на фотографической черно-белой бумаге «Унибром 160 БП».

Сканированные ультрамикрофотографии анализировали в программе AM Lab Hesperus v3.0 beta. В качестве показателей для структурного анализа использовались такие показатели, как объемная доля митохондрий в перикарионе, отношение яркостей эухроматин/гетерохроматин, эухроматин/матрикс цитоплазмы, матрикс митохондрий/матрикс цитоплазмы  и матрикс цитоплазмы/содержимое синаптосом в трехмерной системе координат RGB. Также анализировали фактор формы кариолеммы, наружной мембраны митохондрий, показатель выраженности крист митохондрий.

Вариационно-статистическую обработку результатов проводили в среде электронных таблиц MS Excel. Она была проведена общепринятыми  для медико-биологических исследований методами (расчет средней арифметической величины, среднего квадратичного отклонения, ошибки  репрезентативности для каждого параметра в исследуемых группах животных, сравнение средних значений по критерию Стьюдента с достоверностью различий. Затем, руководствуясь закономерностями, принятыми для медико-биологических исследований (объем выборок, характер распределения, непараметрические критерии), оценивали достоверность различий выборок.  Корреляционный анализ проводился методом простых парных корреляций Спирмена [Зайцев В.М., с соавт., 2003; Петри А., Сабин К., 2003; Новиков Д.А., Новочадов В.В., 2005].



СОБСТВЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В преоптической области у животных с высокой стресс-реактивностью для POM характерно более редкое расположение относительно крупных нейронов с большим объемом окружения и количеством граничных астроглиоцитов; в PeV выявляются более мелкие, но плотнее расположенные нейроны с большим числом граничных нейронов и малым представительством микроглии, а строение POL не отличалось от такового у животных с низкой стресс-реактивностью. Полученные данные в целом свидетельствуют о неоднородности строения ядер преоптической группы переднего гипоталамуса в срезе конституциональной реактивности.

В собственно переднем гипоталамусе для крыс с высокой стресс-реактивностью были характерны относительно более крупные размеры нейронов, их ядер и нейронного окружения (более всего – для SCh). Но для SCh характерна более высокая ОД нейронов, а для SO и PV – относительно более низкая. Интересно, что в триггерном ядре стресса – паравентрикулярном - отличия между группами интактных крыс были минимально выражены. Животные с высокой стресс-реактивностью имеют в передней гипоталамической области меньшее представительство астро- и микроглии (SCh < PV < SO) и неодинаково выраженное, но относительно высокие экспрессии нитроксидсинтаз (максимальные – в SO), рис. 1.

Исследования, проведенные в медиальной и латеральной гипоталамической области у интактных животных с различной стресс-реактивностью, выявили существование целого ряда существенных отличий различий только в двух ядрах – дорсомедиальном и аркуатном, а также в латеральной гипоталамической области. Они касались как показателей размерности ядер и отдельных структур, так и сложности их организации.

Супраоптическое ядро

Супрахиазматическое ядро

Паравентрикулярное ядро


Рис. 1. Особенности строения ядер передней гипоталамической области крыс, связанные с высокой стресс-реактивностью. Обобщенные признаки, за единицу принято значение показателя в альтернативной группе животных.

Принципиальные различия в отношении дорсомедиального и вентромедиального ядра гипоталамуса (первое имеет яркие отличия, зависящие от стресс-реактивности, второе – практически отличий не имеет) может иметь ключевое значение в участии этой области гипоталамуса при развитии стресса. Также удалось показать, что нейроны аркуатного и дорсомедиального ядер гипоталамуса обладают общей особенностью у крыс с высокой стресс-реактивностью. Она заключается в более высоком представительстве катехоламинергических и глутаматцептивных нейронов, что определяет для этих ядер повышенную роль в модуляции силы и продолжительности стрессовой реакции (рис. 2).

Вентромедиальное ядро

Дорсомедиальное ядро

Рис. 2. Особенности строения ядер медиальной группы гипоталамуса крыс, связанные с высокой стресс-реактивностью. Обобщенные признаки, за единицу принято значение показателя в альтернативной группе животных.

Большая сложность организации латеральной гипоталамической области (но не серого бугра) является одним из доказательств большего значения внешних связей гипоталамуса с таламусом и фронтальными областями коры головного мозга в обеспечении высокой стресс-реактивности в сравнении с нервными связями между ядрами гипоталамуса (рис. 3).

Более сложное строение нейропиля было характерно для ретрохиазмальной и латеральной гипоталамической области животных с высокой стресс-реактивностью.

Аркуатное ядро

Латеральное гипоталамическое ядро

Рис. 3. Особенности строения ядер латеральной группы гипоталамуса крыс, связанные с высокой стресс-реактивностью. Обобщенные признаки, за единицу принято значение показателя в альтернативной группе животных.

На уровне маммилярного комплекса показана максимальная вариабельность  строения SuM и PMv, для которых были характерны более плотная нейронная упаковка, относительно большие размеры нейронов и их ядер, большое количество микроглии.

Математический анализ методом определения асимметрии выборок, цензурированных по признаку реактивности, выявил многочисленные «сцепления» данных показателей строения нейронов и их окружения со стресс-реактивностью животных. Практически те же показатели выявлялись как связанные с реактивностью при корреляционном анализе.

Обобщая представления о строении ядер у интактных животных, мы предположили их реакцию при стрессе с учетом строения нейронов, их окружения, астроглиального и микроглиального представительства, картирования ряда изученных медиаторов, а для SO и SCh - ультрамикроскопического строения. Все исследованные ядра гипоталамуса были разделены на пять групп (рис. 4).

«слабые» ядра с низкой потенциальной резистентностью POM

практические не зависящие от реактивности POL, VM, PMd и ML

«слабые» ядра с высокой потенциальной резистентностью PeV и SO

«сильные» ядра с низкой потенциальной резистентностью PV и DM

«сильные» ядра с высокой потенциальной резистентностью SCh, ARC, SuM, и PMv


Рис. 4. Распределение вариабельных ядер гипоталамуса у крыс с высокой стресс-реактивностью на основании математического анализа.

1. К «сильным» ядрам с потенциально высокой устойчивостью к стрессорному повреждению у животных с высокой стресс-реактивностью  отнесены супрахиазматическое, аркуатное, супрамамиллярное и вентральная часть премамиллярного ядра.

2. «Сильными», но со сниженной потенциальной резистентностью к стрессорному повреждению для животных ВСР группы были признаны триггерные ядра стресса - паравентрикулярное и дорсомедиальное.

3. К «слабым» структурам, но с высокой резистентностью к повреждению были отнесены супраоптическое и перивентрикулярное ядро.

4. Медиальное преоптическое ядро было единственным, расцененным как «слабое» с низкой резистентностью.

5. Латеральное преоптическое ядро, вентромедиальное ядро, медиальная часть премамиллярного ядра и латеральное мамиллярное ядро – ядра, строение и резистентность которых к повреждению от стресс-реактивности практически не зависели.

Безусловно, проводя  такое разделение, мы отдавали себе отчет в том, что при развитии стресса на реальные изменения в ядре будет оказывать влияние не только особенности его нейронного окружения или устройства самих нейронов, но также общая и специфическая функциональная нагруженность в реализации работы стрессорной системы.

Подобный анализ возможен только в сопоставлении изменений по отдельным ядрам применительно к их установленной функции, рецепторному аппарату, медиаторному представительству и вовлеченности в развитие стрессорных реакций.

В преоптической зоне гипоталамуса, помимо развитого нейропиля, определялись три основных ядра, из которых максимально вариабельным от стресс-реактивности оказалось POM. Эта структура связана с терморегуляцией и участвует в регуляции секреции половых гормонов, сексуального поведения, имеет выраженные различия у самцов и самок [Yoshida K. et al., 2002; Lowry C.A. et al., 2007]. Предполагается также участие этой зоны и в интеграции импульсов сердечно-сосудистой системы [Акмаев И.Г., 2003; Ахмадеев А.В., Калимуллина Л.В., 2006], реакциях гипоталамуса на хроническую эндогенную интоксикацию [Фролов В.И., 2004].

На основе нашего анализа POM интактных животных было отнесено к «слабым» ядрам с низкой резистентностью. Это определялось относительно меньшими размерами перикарионов и ядер нейронов, менее плотной их упаковкой в ядре с относительно малым количеством граничных клеток и относительно низким микроглиальным представительством. В POM животных ВСР группы определялся относительно высокий исходный уровень экспрессии нейрональной нитроксидсинтазы.

В то же время, при стрессе это ядро оказалось поврежденным в относительно малой степени (около 5,0%), причем в равной степени в группах с различной стресс-реактивностью. Аналогичные факты были выявлены и при последующем анализе строения ядра после стресса.

По-видимому, POM не относится к ядрам, в значительной степени включающимся в реализацию стресс-системы, в связи с чем его изменения в нашей модели стресса оказываются менее ожидаемых и в малой степени зависят от стресс-реактивности. Определенную роль в этом может играть и общая картина защитного торможения, описанная для стресса в отношении преоптических структур в целом [Crowder R.J., Freeman R.S., 1998; Stone E.A., et al., 2006], равно как и относительно умеренная реализации сосудистых нарушений за счет активации нитроксидсинтаз и ФНО-зависимого апоптоза нейронов [Куликов В.П. с соавт., 2005; Меньшанов П.Н. с соавт., 2007; Schuler M., Green D.R., 2001; Schultz D.R., Harrington W.J.Jr., 2003; Mattson M.P., Kroemer G., 2003 ].

Перивентрикулярное ядро гипоталамуса у животных с высокой стресс-реактивностью было нами отнесено к «слабым», но с высокой резистентностью к повреждению. Этот прогноз полностью подтвердился. Степень повреждения нейронов в PeV была чуть более 5% в ВСР группе, более 11% - в НСР группе. Изменения других показателей, в том числе незначительная активация нитроксидсинтаз, хорошо согласуются с известными из литературы сведениями об относительно малом участии PeV в стрессорной реакции, умеренной выраженности ФНО-зависимого апоптоза при стрессе [Меньшанов П.Н. с соавт., 2007; Figueiredo H.F. et al., 2003; Badowska-Szalewska E., et al., 2006]. Локальное повреждение PeV способно предотвратить стрессорное ограничение секреции тиротропного гормона и гормона роста [Лычкова А.Э.,  Смирнов В.М., 2002; Campbell R.E. et al., 2003].

Таким образом, мы подтвердили предположение о том, что у животных с высокой конституциональной стресс-реактивностью имеется исходно большая вероятность стрессорного повреждения POM, тогда как PeV повреждается в меньшей степени и обладает высокой резистентностью к повреждению.

Супраоптическое ядро рассматривается как наиболее поражаемое ядро при хроническом стрессе самой разной этиологии [Писарев В.Б., 1990; Писарев В.Б., с соавт., 1998, 2006; Фролов В.И., 2004]. Нейроэндокринные клетки SO и PV являются источниками кортиколиберина, тиролиберина и ряда других нейрогормонов, непосредственно вовлекающихся в стартовые (триггерные) механизмы стресса [Казакова с Т.Б. соавт., 2000; Рыбникова Е.А. с соавт., 2001; Вашадзе Ш.В., 2006; Jorgensen H. et al., 2003; Inoue T. et al., 2004].

В отношении этой структуры анализ выявил несколько противоречивых данных. С одной стороны, при стрессе данное ядро у крыс с высокой стресс-реактивностью повреждалось сильнее, ОД нейронов в SO у животных ВСР группы уменьшалась на 22,3%, тогда как  в НСР группе – только на 14%. Изменение размеров нейронов, сложности их окружения и количества нейроглии в принципе свидетельствовали, что SO ядро является «сильным звеном» главным образом у крыс с низкой конституциональной стресс-реактивностью. В то же время существенные различия в экспрессии нитроксидсинтаз, отсутствие существенных корреляционных доказательств между степенью повреждения и другими морфометрическими показателями не позволили считать резистентность этого ядра сниженной. В итоге SO у животных с высокой стресс-реактивностью следовало отнести к группе «слабых» ядер с высокой резистентностью к повреждению.

При ультрамикроскопическом исследовании были выявлены еще несколько особенностей SO у крыс с высоким уровнем стресс-реактивности: относительно более высокий удельный объем митохондрий в перикарионах с их более функционально активной организацией.

Исходя из ключевых функций SO, результаты нашего анализа можно интерпретировать следующим образом.

1. Супраоптическое ядро способно к медленноволновой секреции кортиколиберина, является основным продуцентом вазопрессина. Продукцию окситоцина и половых стероидов следует отнести скорее к минорным функциям ядра [Patel K.P., et al., 2000; Nomura M. et al., 2003]. Наряду с прямым своим действием, вазопрессин и окситоцин через местные механизмы модулируют секрецию кортиколиберина и запуск секреции АКТГ [Sun Y. et al., 2001; Wotjak C.T. et al., 2002]. 

2. При стрессе в SO происходит резкое уменьшение секреции вазопрессина, и данный эффект нередко приводит к развитию сосудистого коллапса с переходом в шоковое состояние [Сивухина Е.В. с соавт., 2003; Giusti-Paiva A., et al., 2002]. Подъем синтеза и секреции кортиколиберина начинается не сразу после стресса, а через 6-12 часов, обеспечивая закрепление и определенную пролонгацию стрессовой реакции. Синтез окситоцина при стрессе в SO практически не меняется, а половых стероидов (что не столь существенно для гормонального пула в целом) – снижается [Berciano M.T. et al., 2002].

3. Следовательно, у животных с высокой стресс-реактивностью за счет существования особенностей строения SO в полной мере не обеспечивается адекватное развитие второй, более медленной волны выброса кортиколиберина и соответствующих колебаний секреции стресс-лимитирующих гормонов. Это и придает стрессу скоротечность и остроту, выдаваемую по внешним признакам за «высокую» реактивность.

Супрахиазматическое ядро было отнесено нами к сильным ядрам с потенциально высокой устойчивостью к повреждению.

Наличие в SCh интактных крыс ВСР группы относительно более высокого процента NOS-1-позитивных нейронов и малый коэффициент NOS-1/NOS-3 мы рассматриваем в качестве одной из ключевых характеристик, связанных с конституциональной стресс-реактивностью.

В нейронах SCh крыс ВСР группы также выявлено преобладание гетерохроматина, преимущественно рядом с ядерной оболочкой, отсутствие инвагинаций кариолеммы и высокая электронная плотность кариоплазмы. Для них характерно обилие органелл в цитоплазме перикариона, мономорфность митохондрий и относительно малая плотность их матрикса. В своей совокупности эти особенности также рассматривались как субстрат большей функциональной активности и лабильности SCh у животных с высокой стресс-реактивностью.

При стрессе в SCh развивались относительно малые изменения, и минимальные – у животных с высокой стресс-реактивностью. Наличие в SCh стрессированных крыс ВСР группы относительно небольшого прироста NOS-1-позитивных нейронов и умеренный коэффициент NOS-1/NOS-3 свидетельствовали о его резистентности к стрессорному повреждению. Электронно-микроскопическое исследование нейронов выявило сохранение структуры ядерного хроматина и кариолеммы, небольшое увеличение числа митохондрий без структурных особенностей в них. В перинуклеарной области части нейронов наблюдалась отчетливая вакуолизация, но мембранные органеллы были многочисленны и структурно не повреждены.

Гуморальная активность SCh многообразна - это секреция вазопрессина, окситоцина, опиатов, гонадолиберина, бомбезина [Владимиров С.В., Угрюмов М.В., 1995; Васильев Ю.Г., с соавт., 2003; Калинкин М.Н., с соавт., 2004; Chan R.K. et al., 1993; Carloni S. et al., 2004].

Сопоставление этих особенностей SCh у интактных животных и стресс-индуцированных изменений позволило с функциональным предназначением ядра позволило сделать следующее логическое построение.

1. SCh является центром циркадианных ритмов, которое воспроизводится даже на удаленных из организма плоскостных срезах-культурах гипоталамуса, содержащих данное ядро. Важным входом этого ядра является проекция глаза, после разрушения SCh у крыс теряется способ­ность настраивать эндогенный ритм на часто­ту чередования свет/темнота [Николс Дж. Г., 2003; Васильев Ю.Г., с соавт., 2003; Калинкин М.Н., с соавт., 2004; Chan R.K. et al., 1993; Carloni S. et al., 2004].

2. При стрессе и шоке с сохранением активности SCh связывают основные механизмы резистентности. Происходит учащение спонтанной импульсации нейронов SCH, не связанных с суточной активностью, секреция коритиколиберина и окситоцина при этом увеличивается, гонадолиберина и опиоидов - уменьшается [Демко П.С. с соавт., 2002; Кузнецов И.Э., 2003; Sharkey J. et al., 2000; Fonnum F., Lock E.A., 2004; Slikker W.Jr. et al., 2005].

3. Следовательно, наличие сильного относительно мало повреждаемого SCh у животных с высокой стресс-реактивностью способно модулировать триггерные эффекты стресса, тонически повышая активность многих структур ЦНС и более жестко блокируя основные гормональные оси, затормаживаемые при остром стрессе (половых гормонов, гормона роста и др.). Этим и достигается более очерченная яркая картина стрессовой реакции у животных с высокой стресс-реактивностью.

Наконец, паравентрикулярное ядро занимало в наших исследованиях особое место. Детально изученное, оно справедливо называется ключевым триггерным ядром стресса. В первую фазу стресса оно выбрасывает большие количества кортиколиберина, оказывающего дальнейшее влияние на деятельность симпатико-адреналовой системы и, соответственно, изменение коронарного кровотока, артериального давления, частоты сердечных сокращений, сосудистой проницаемости [Кузнецов И.Э., 2003; Хитров Н.К., Салтыков А.Б., 2003; Куликов В.П. с соавт., 2005; Писарев В.Б. с соавт., 2006; М.Ю.Капитонова с соавт., 2008]. Известно, что при стрессе кортиколиберин может непосредственно использоваться в ткани гипоталамуса в качестве нейротрансмиттера для модуляции высших поведенческих реакций [Shumake J. et al., 2001; Boutahricht M. et al. 2005].

У интактных животных мы не выявили существенных особенностей строения самих нейронов PV в связи со стресс-реактивностью. В то же время, на один нейрон в PV животных ВСР группы приходилось в среднем меньше граничных нейронов и астроглиоцитов, в сравнении с аналогичными показателями в НСР группе. Мы предположили, что стресс-реактивность определяется на уровне гипоталамуса не столько филогенетически закрепленным для данного вида строением PV, сколько особенностями относительно молодых в филогенетическом отношении ядер с модулирующим в отношении стрессовой реакции действием, а также сложностью организации внутригипоталамических связей (нейропиля).

В то же время, наличие в PV интактных крыс ВСР группы относительно более высокого процента NOS-1-позитивных нейронов и малый коэффициент NOS-1/NOS-3 свидетельствовали о его более высокой реактивности при развитии стресса. На основании математического анализа связей со стресс-реактивностью PV было отнесено к «сильным», но со сниженной потенциальной резистентностью к стрессу.

Действительно, при моделировании стресса у животных ВСР группы мы обнаружили большую степень поражения нейронов (25,6% против 13,8% в НСР группе). ОД нейронов в PV у животных с высокой стресс-реактивностью уменьшалась почти вдвое, а в НСР группе – только на 37%, аналогично более интенсивные изменения были определены и для размеров ядер нейронов, прироста коэффициента окружение/нейрон и микроглиальной реакции.

При сопоставлении полученных данных о строении интактного PV в связи со стресс-реактивностью и его стресс-индуцированных изменений, мы построили следующее логическое заключение.

1. Основной функцией PV является секреция окситоцина и вазопрессина крупноклеточной частью нейронов, мелкоклеточная часть ядра модулирует эти функции и секретирует кортиколиберин [Акмаев И.Г., 2001; Евсеев В.А., с соавт. 2001; Stern J.E., Zhang W., 2003]. Кроме этого, в PV происходит синтез эндорфинов, ангиотензина, соматостатина, соматолиберина и пролактолиберина [Campbell R.E. et al., 2003]. Ассоциативные нейроны PV имеют в основном пептидергическую природу и обеспечивают взаимодействие пулов основных клеток-гормонопродуцентов, и на местном уровне акцептируют результат [Сивухина Е.В. с соавт., 2003; Лискина Е.Б., 2003; Кузнецов И.Э., 2003; Kc P. et al. 2002; Figueiredo H.F. et al., 2003; Jingyi M.A. et al., 1994; Jorgensen H. et al., 2003; Nomura M. et al., 2003; Dallman M.F. et al., 2005].

2. PV непосредственно участвует в запуске стрессовых реакций. Выброс кортиколиберина и молекулярные изменения в нейронах PV показаны уже спустя несколько секунд от начала стрессорного повреждения – раньше всех других изменений секреции в ЦНС [Корнева Е.А., 2000; Суворов Н.Ф., Шуваев В.Т., 2002; Reyes T.M. et al., 2003; Campbell R.E. et al., 2003; Girotti M. et al., 2006; McCormick C.M. et al., 2007]. Нейроны PV, синтезирующие вазопрессин и соматостатин, также являются стресс-реактивными с ответом на стрессорное раздражение через 3-6 мин от его начала [Kc P. et al. 2002; Girotti M. et al., 2006; Dallman M.F. et al., 2005].

3. Соответственно, у животных с высокой стресс-реактивностью мы наблюдаем не столько повреждение, сколько истощение PV при стрессе, обеспечивающее максимально выраженный характер стрессорной активации с выбросом кортиколиберина и других модулирующих стрессорные реакции гормонов. Это, безусловно, «сильное» ядро у животных с высокой стресс-реактивностью. Его весьма высокая степень повреждения при развитии стресса преимущественно определяются функциональной нагрузкой PV и слабостью его микроглиального представительства.

Завершая описание переднего гипоталамуса в нашей работе, мы не можем не коснуться и не обсудить результатов нового метода исследования в нейроморфологии – радиальной морфометрии биологических объектов с использованием биологически актуальной системы координат.

Принцип радиальной морфометрии основан на классических концептах нейроморфологии, благодаря которым и были, собственно говоря, выделены, ядра гипоталамуса [Автандилов Г.Г., 1973; Боголепов Н.Н, 1980; Писарев В.Б., 1990; Thompson R.H., Swanson L.W., 2002]. Компьютерная морфометрия, основанная на построении осевых градиентов (трансверсального, дорсовентрального и краниокаудального) тинкториальных свойств нервной ткани является эффективным подходом к анализу конституциональных особенностей морфологии ЦНС. С помощью формализованных показателей функции распределения интенсивности при морфометрии препаратов, окрашенных классическим для нейроморфологии методом – тионином по Нисслю, нам удалось показать особенности, свойственные SO, SCh, PV у животных с различной стресс-реактивностью.

1. У животных с высокой стресс-реактивностью, структуры переднего гипоталамуса, расположенные краниально, имели меньшее соотношение нейрон/глия, а структуры, расположенные каудальнее – большее, в сравнении с НСР группой.

2. У интактных крыс с высокой стресс-реактивностью плотность расположения нейронов в SO оказывалась достоверно выше в вентральной части ядра и имела флуктуации плотности (идентифицируемые как нейронные ансамбли), тогда как у крыс НСР группы нейроны располагались более равномерно по всему объему SO. При стрессе наблюдалось выравнивание (гомогенизация) плотности, более показательное у животных с высокой стресс-реактивностью.

3. У животных ВСР группы вне стресса нейроны плотнее располагались к дорсомедиальной части SCh, в то время как у крыс с конституционально низкой реактивностью -  к медиальной части, часто образуя при этом нейронные ансамбли. При стрессе у животных ВСР группы снижались медиолатеральный и дорсовентральный градиенты, тогда как у крыс с низкой стресс-реактивностью сохранялось относительно плотное и гомогенное расположение нейронных ансамблей со склонностью к концентрации в дорсомедиальном направлении от центра ядра.

4. В PV интактных животных ВСР группы нейроны располагались равномерно, тогда как у крыс с низкой стресс-реактивностью их плотность нарастала к центру ядра. При стрессе дорсовентральный градиент плотности нейронов выравнивался, появлялось четкое понижение плотности к латеральной периферии ядра, более выраженные в ВСР  группе.

В настоящее время все чаще звучит мысль о том, что современная количественная морфология с введением в практику компьютерного анализа образов должна перейти от механической «оцифровки» численных показателей, описывающих структуры, к более сложным, интерпретирующим связям между элементами единой системы гистиона [Автандилов Г.Г., 2002; Писарев В.Б., с соавт., 2006; Hamano H. et al., 2002].

В переднем гипоталамусе удалось проанализировать и NO-зависимый механизм повреждения нейронов.

Окись азота участвует в механизмах повреждения нейронов при травме, острой ишемии мозга, стрессе и шоке. Любые процессы, ведущие к накоплению ионов Са2+  в клетке (энергетический дефицит, изменения активного ионного транспор­та, глутаматная «эксайтотоксичность», оксидантный стресс), сопровожда­ются повышением уровня NO [Марков Х.М., 2006; Yamamoto F. et al., 2007; Gingerich S., Krukoff T.L., 2006].

Возбуждение NMDA рецепторов приводит к активации NOS-1 и повы­шенному высвобождению NO. В настоящее время нет однозначного мне­ния о роли оксида азота в механизме токсического действия глутамата. Его токсическое действие связано с нарушением митохондриального окисли­тельного фосфорилирования и метаболизма рибонуклеотидредуктазы, об­разованием свободнорадикального соединения пероксинитрит-аниона, ко­торое блокирует ряд нейрональных рецепторов, инактивирует фермент супероксиддисмутазу и вызывает углубление свободнорадикального окисле­ния, приводящего к гибели клетки. Кроме того, пероксинитрит способен тормозить тирозинкиназу, входящую в активный центр нейротрофических факторов, увеличивая степень недостаточности трофического обеспечения мозга [Лискина Е.Б., 2003; Zanchi A. et al., 1995; Brenman J.E., Bredt D.S., 1996; Eliasson M.J. et al., 1999; Han H.S. et al., 2002; Meini A. et al., 2006].

В то же время, имеются сведения о том, что NO, активируя растворимую гуанилатциклазу, повышает синтез циклического гуанозинмонофосфата и  может за­щищать нейроны при токсическом воздействии глутамата. Формирование нитрозониума-иона NO+, связывающего регуляторный центр NMDA рецепторов, уменьшает их возбудимость и снижает чувствительность к повреждению [Недоспасов А.А., 1998; Тотолян А.А., 2003; Малышев И.Ю., с соавт., 2004; Pringle A.K. et al. 1999; Golde S. et al., 2002; Yamamoto F. et al., 2007].

Таким образом, проявляется двойственная природа окиси азота, при­сущая многим природным модуляторам.

Результаты наших экспериментов свидетельствуют о неодинаковой экспрессии нитроксидсинтазы в переднем гипоталамусе.

У интактных крыс ВСР группы относительно высокий процент иммунопозитивных нейронов выявлялся в медиальном преоптическом, паравентиркулярном и супраоптическом ядрах, несколько меньше была экспрессия в POl, PeV и SCh. Экспрессия NOS-3 была относительно невелика, в сравнении с НСР группой. Наличие относительно высокого процента NOS-1-позитивных нейронов и малый коэффициент NOS-1/NOS-3, свидетельствующий о более высоком представительстве эндотелиальной нитроксидсинтазы, мы отнесли к предикторам более высокой стресс-реактивности. По-видимому, исходно низкое представительство эндотелиальной изоформы NOS имеет прямое отношение к последующей динамике стрессорного повреждения нейронов в этом участке ГМ и может быть использовано при разработке новых подходов к нейропротекции.

Действительно, при стрессе мы увидели различия в экспрессии нитроксидсинтаз по отдельным ядрам.

1. В SO и PV крыс ВСР группы при стрессе наблюдался относительно больший прирост NOS-1-позитивных нейронов и малый коэффициент NOS-1/NOS-3, что  отражало более высоком участие эндотелиальной нитроксидсинтазы в развитии стрессорного повреждения нейронов.

2. В SCh стрессированных крыс ВСР группы наблюдался относительно меньший прироста NOS-1 и умеренный коэффициент NOS-1/NOS-3, что соответствовало меньшему повреждению нейронов.

В то же время, интенсивность повреждения нейронов при стрессе, зависящая от стресс-реактивности животных, в преоптической группе ядер, по-видимому, в малой степени была связана с местными механизмами взаимодействия двух изоформ нитроксидсинтаз.

Вентромедиальное ядро особенностей, связанных со стресс-реактивностью, практически не имело. Лишь у крыс ВСР группы нейроны VM имели несколько большие размеры ядра и меньшее отношение перикарион/ядро, среднее количество граничных астроглиоцитов было больше примерно на треть аналогичного показателя у крыс с низкой стресс-реактивностью.

При стрессе степень повреждения нейронов в VM также не различалась между группами, была относительно высокой, составляя около 22%.

Как известно, вентромедиальное ядро функционально является «центром насыщения» и через свои многочисленные связи с различными структурами ЦНС и внутри гипоталамуса является классически модулирующим для большинства других ядер [Акмаев И.Г., 2003; Писарев В.Б. с соавт., 2006; Bowie A., O’Neill L.A., 2000; Tran P.V.,  et al., 2006; Goto S. et al., 2007].

По-видимому, фенотипически проявляющаяся высокая стресс-реактивность не требует каких-либо особенностей от строения VM, равно как она и не отражается на его вовлеченности в стресс-индуцированное повреждение гипоталамуса.

Дорсомедиальное ядро у интактных крыс имело многочисленные  особенности в связи с их стресс-реактивностью. Для животных ВСР группы были характерны относительно более плотно расположенные крупные нейроны с большим ядром и объемом перикариона, малым объемом перикарионного окружения. Для таких нейронов характерно большое число граничных нейронов, микроглии и, в особенности, - астроглии. Процент катехоламинергических и глутаматцептивных нейронов был достоверно больше. На основании математического анализа мы отнесли DM у крыс с высокой стресс-реактивностью к числу  «сильных», но со сниженной потенциальной резистентностью к стрессорному повреждению.

При стрессе степень повреждения нейронов в DM существенно различалась между группами: 7,2% в ВСР и 15,2% - в НСР группе.

У животных с высокой стресс-реактивностью ОД нейронов уменьшалась 10,7%, у крыс НСР группы – на 15%. Объемное отношение нейронного окружения к перикариону увеличивалось при стрессе в ВСР группе в 1,4 раза, в НСР группе – в 1,1раза. Коэффициент микроглия/нейрон возрастал на 23,9% в ВСР группе, на 81,3% - в НСР группе. При иммуногистохимическом выявлении тирозингидроксилазы зафиксировано частичное истощение синтетической активности катехоламинергических нейронов, более выраженное у животных с низкой стресс-реактивностью.  В противовес этому, экспрессия GR2 увеличивалась без каких-либо существенных различий между группами.

Для объяснения подобного несовпадения между изначальным прогнозом и степенью стрессорных изменений нами были проанализированы возможные дополнительные факторы, имеющие значения для повреждения DM в связи с его функцией и участием в развитии стрессовой системы.

1. Как известно, DM относится к структурам, осуществляющим на уровне гипоталамуса коммуникацию между нейроэндокринными, вегетативными и поведенческими реакциями, включая участие в болевой (ноцицептивной) системе. Это обеспечивается наличием весьма широкого спектра медиаторов: норадреналина, серотонина, дофамина, ГАМК, ряда пептидов  [Westphal R.S. et al., 1999; Morin S.M. et al., 2001; Lay A.J. et al., 2007; Goswami C. et al., 2007]. Не следует забывать о сексуальном диморфизме ядра и о его участии в регуляции полового поведения [Ахмадеев А.В., Калимуллина Л.В., 2006].

2. При стрессе в DM происходит многократное увеличение (взрыв) медиаторной активности, причем описано генетическое детерминирование силы ответа  [Kovacs K.J., Sawchenko P.E., 1996; Paskitti M.E. et al., 2000; Lowry C.A. et al., 2003]. Сама территория DM при стрессе относится к уязвимым, и становится местом выраженных микроциркулярторных нарушений, отека и гибели нейронов [Смирнов А.В., 2003, 2005; Nedungadi T.P. et al., 2006].

3. Следовательно, объяснение столь мощного повреждения DM у животных с высокой стресс-реактивностью следует искать не столько в особенностях строения ядра до начала стресса, сколько в его более интенсивном вовлечении в развитие стрессовой системы при активации «сильных» триггерных ядер, прежде всего – PV. Это позволяет отнести механизм большего стресс-индуцированного повреждения DM у животных с высокой стресс-реактивностью к вторичным.

Аркуатное ядро у крыс с высокой стресс-реактивностью имело ряд особенностей. Прежде всего, для него были характерны относительно большая ОД нейронов, с несколько меньшие размеры ядер нейронов, но большие размеры перикарионов. При относительно небольшом объеме перикарионного окружения нейроны ARC у животных с высокой стресс-реактивностью имели большее число граничных астроглиоцитов и меньшее – микроглиоцитов. Для них характерны более низкие экспрессии тирозингидроксилазы и рецепторов глутамата. По результатам математического анализа ARC было отнесено к «сильным» ядрам с потенциально высокой устойчивостью к стрессорному повреждению.

Как и большинство ядер переднего и среднего гипоталамуса, ARC имеет множественное медиаторное представительство (дофамин, серотонин, брадикинин, ГАМК, нейропептид Y, субстанция Р, эндорфин), и выполняет ассоциативные и гормональные функции. Основные гормоны, происходящие из ARC – меланокортин и гонадолиберины, частично разделенные в ядре пространственно  [Ахмадеев А.В., Калимуллина Л.В., 2006; Boche D. et al. 2003; Balkan B. et al., 2003; Wu Y.H., et al., 2006; Lowry C.A. et al., 2007].

При стрессе одни авторы указывают на умеренное [Демко П.С. с соавт., 2002; Кузнецов И.Э., 2003; Sharkey J. et al., 2000; Fonnum F., Lock E.A., 2004; Slikker W.Jr. et al., 2005], другие – на весьма высокое повреждение ARC [Писарев В.Б., 1990; Казакова Т.Б. с соавт., 2000; Смирнов А.В., 2003; Фролов В.И., 2004; Копылова Г.Н., с соавт., 2007].

В наших исследованиях, при стрессе степень повреждения нейронов в ARC достоверно различалась между группами: 2,6% в ВСР и 9,2% - в НСР группе. Аналогичные доказательства были получены и при корреляционном анализе основных морфометрических показателей.

Для дополнительного обоснования этого факта мы приняли во внимание несколько известных данных.

Во-первых, наибольшая концентрации рецепторов к кортиколиберину за пределами гипофиза выявлена в аркуатном ядре гипоталамуса [Slikker W.Jr. et al., 2005]. Это свидетельствует в пользу его быстрого вовлечения в работу стрессовой системы.

Далее (это уже наши находки), нейроны аркуатного ядра обладают у крыс с высокой стресс-реактивностью более высоким представительством катехоламинергических и глутаматцептивных нейронов, что определяет для этих ядер повышенную роль в модуляции силы и продолжительности стрессовой реакции.

Еще одна особенность лежала в специфичности ядра в связи с его участием в регуляции секреции половых гормонов. Освобождаемый из нейронов гонадолиберин только по «классической» схеме избирательно действует на клетки аденогипофиза. Реально локальное выделение этого релизинг-гормона в гипоталаму­се сопряжено с активностью и секрецией не только половых гормонов, но и норадреналина, дофамина, гистамина, глутамата, ГАМК. Они обладают мощными связями с циркадианной ритмикой, акцепцией боли, и многими другими вегетативными функциями, а также иммунологической реактивностью организма [Николс Дж. Г., 2003; Васильев Ю.Г., с соавт., 2003; Калинкин М.Н., с соавт., 2004; Chan R.K. et al., 1993; Carloni S. et al., 2004]. Эти факты лежат в основе прямого доказательства параллелей между иммуносупрессивным и гипорепродуктивными эффектами хронического стресса [Клименко В.М., 1993; Friedman E.M., Irwin M.R., 1995; Dufourny L., Skinner D.C., 2002].

В мамиллярном комплексе наше внимание привлекли в основном две структуры: супрамамиллярное ядро и дорсальная часть премамиллярного ядра.

У животных с высокой стресс-реактивностью в супрамамиллярном ядре ОД нейронов, СО ядер и перикарионов нейронов, объемы нейронного окружения, среднее число граничных клеток на 12%-25% превышали аналогичные показатели у крыс НСР группы. При высоком микроглиальном представительстве в целом, коэффициент микроглия/нейрон был на 25%  меньше в ВСР группе.

При стрессе у животных ВСР группы степень повреждения нейронов в SuM  оказывалась значительно выше, чем в НСР группе (29,8% против 12,1%). Такие важнейшие для определения стресс-индуцированного повреждения ядра показатели морфометрии, как снижение ОД нейронов, увеличение СО ядер нейронов и увеличение коэффициента микроглия/нейрон были выражены в SuM у животных с высокой стресс-реактивностью значительно ярче, в сравнении с альтернативной группой.

В PMd объемная доля нейронов у крыс с высокой стресс-реактивностью на 24,9% превышала аналогичный показатель в НСР группе с низкой стресс-реактивностью, среднее число нейронов и средние размеры их ядер – на  20%. На каждый нейрон PMd у животных с высокой стресс-реактивностью приходилось на 39,6% больше граничных нейронов и на 51% больше граничных астроглиоцитов, в сравнении с аналогичными показателями в НСР группе. Остальные показатели существенно не отличались между группами.

При стрессе в PMd различий между группами в степени повреждения нейронов не было отмечено (около 12%).  Не было различий у степени снижения ОД нейронов, изменения СО ядер нейронов, отношения окружение/перикарион и коэффициента микроглия/нейрон.

На основании математического анализа мы пришли к выводу, что SuM относится к «сильным» ядрам с потенциально высокой устойчивостью к стрессовому повреждению, а PMd  – к ядрам, строение и резистентность которых к повреждению от стресс-реактивности практически не зависит.

Для объяснения феноменов, развивающихся в мамиллярном комплексе при стрессе, мы приняли во внимание следующие факты.

1. Мамиллярный комплекс относится к наиболее древним образованиям гипоталамуса и функционально связан скорее с другими отделами лимбической системы (прежде всего – гиппокампом), нежели с вентральными ядрами и секреторной частью гипоталамуса. Нейроны SuM и PMd этого комплекса оказывают тормозное ГАМК-ергическое влияние на кору, ретикулярную формацию и элементы лимбической системы. На основании наличия этих связей предполагают участие структур мамиллярной области в выявлении образов памяти и формировании эмоциональной окраски поведения, в том числе – при стрессе [Писарев В.Б. с соавт., 2006; Kovacs K.J., Sawchenko P.E., 1996; Wirtshafter D., 1998; Nakamura M., et al., 2007].

2. Исследуя PMd при хроническом стрессе, В.Б.Писарев с соавт. (1995) описали нейроны этих ядер как максимально резистентные к повреждению среди всех структур маммилярного комплекса, а нейроны SuM – как наименее резистентные. Предварительное повреждение мамиллярных тел сопровождается снижением скорости принятия решений при стрессорных нагрузках и усиливает степень стрессорного повреждения внутренних органов [Тарабрина Н.В. с соавт., 1996; Beracochea D.J., Jaffard R., 1995]

3. Следовательно, элементы мамиллярного комплекса не могут, за исключением SuM, быть отнесены к ключевым структурам, определяющим на уровне гипоталамуса стресс-реактивность и уровень стрессорного повреждения. Их собственное повреждение носит скорее перегрузочный характер и определяется относительно большей интенсивностью стрессорной афферентации лимбической системы у животных с высокой стресс-реактивностью.

Таким образом, проведя детальный анализ по отдельным ядрам гипоталамуса, мы можем утверждать, что на ультраструктурном, клеточном и тканевом уровне ядра и поля гипоталамуса (каждое в разной степени) обладают широкой вариабельностью строения, в котором можно выделить устойчивые наборы признаков, свойственных животным с конституционально высокой и низкой стресс-реактивностью. С другой стороны, наличие (предсуществование) этих особенностей только частично определяет характер и выраженность последующих стресс-индуцированных  изменений в этих структурах.

Изменения гипоталамуса при стрессе развиваются не во всех ядрах и носят комплексный характер, в качестве обязательных компонентов включая в себя сосудистые нарушения, повреждение и компенсаторную перестройку нейронов, изменения нервных проводников и реакцию нейроглиальных элементов (табл.2).

В целом, можно подтвердить, что конституционально высокая стресс-реактивность является фактором, обеспечивающим при стрессе относительно более высокое повреждение нейронов в  супраоптическом, паравентрикулярном и супрамамиллярном ядрах и ретрохиазмальной области гипоталамуса, но меньшее повреждение нейронов в перивентрикулярном, супрахиазматичеком, дорсомедиальном ядрах и латеральной гипоталамической области. Эти различия не обязательно наблюдались только в ядрах с высокой интенсивностью стресс-индуцированных повреждений.

Обнаруженный полиморфизм изменений основных ядер гипоталамической области выявил ряд специфических черт, характерных для высокоорганизованных структур ЦНС:

- высокий процент клеток с сохранной структурой, находящихся в состоянии повышенной функциональной активности;

- большую зависимость изменений от локализации и функционального предназначения ядра, нежели от его васкуляризации и глиального представительства;

- выраженный краниокаудальный и дорсо-вентральный градиент  поражения при полном отсутствии билатеральной асимметрии (рис. 5).

Таблица 2

Степень повреждения нейронов (%, M±m) при 24-часовом иммобилизационном стрессе крыс с различной стресс-реактивностью

Ядра и поля

Гипоталамуса

Группы животных

ВСР

НСР

Интактные

Стресс

Интактные

Стресс

Передняя группа

Мед. преоптическое (POM)

Лат. преоптическое (POL)

Перивентрикулярное (PeV)

Супраоптическое (SO)

Супрахиазматическое

(SCh)

Паравентрикулярное (PV)

Преоптическая область

(APO)

Ретрохиазмальная область

(RCh)

0

0

0,9±0,1

2,7±0,2

0

3,5±0,2

0

0,5±0,1

4,5±0,3*

2,3±0,2*

6,1±0,5*

22,0±1,2*

3,4±0,2*

25,6±1,3*

3,8±0,3*

9,1±0,7*

0

0

1,0±0,2

0,6±0,1#

0

0,5±0,1#

0

0

5,0±0,4*

2,6±0,3*

11,0±0,2*#

14,3±1,1*#

7,1±0,5*#

13,8±1,4*#

4,0±0,3*

6,2±0,5*#

Медиальная и латеральная группы

Дорсомедиальное (DM)

Вентромедиальное (VM)

Аркуатное (ARC)

Лат. гипоталамическое ядро (NHL)

Латеральное поле (AHL)

Серый бугор (TGr)

0,6±0,1

1,3±0,2

0

0

0,6±0,1

0

7,2±0,5*

21,8±1,6*

2,6±0,2*

11,2±0,7*

9,1±0,6*

3,3±0,4*

0

0

0

0

0

0

16,5±1,3*#

22,0±2,1*

9,2±0,8*#

11,0±1,2*

12,5±1,6*#

3,2±0,4*

Задняя группа

Супрамамиллярное (SuM)

Лат. мамиллярное (ML)

Мед. часть медиального мамиллярного (MMm)

лат. часть медиального мамиллярного MMl)

Дорсальная часть

премамиллярного (PMd)

Вентральная часть

премамиллярного (PMv)

2,1±0,2

0

0

0

1,1±0,2

1,0±0,2

29,8±2,3*

2,9±0,2*

2,8±0,2*

3,1±0,2*

11,8±1,0*

3,6±0,4*

1,1±0,2#

0

0

0

0,5±0,1#

0

14,8±1,1*#

3,0±0,3*

3,2±0,3*

3,3±0,3*

12,1±1,0*

3,9±0,5*

* - достоверные различия между интактными и после стресса,

# - между ВСР и НСР группами

Дорсовентральный градиент

Медиолатеральный градиент


Рис. 5. Дорсовентральный и медиолатеральный градиенты плотности нейронов в супраоптическом ядре гипоталамуса при стрессе крыс с высокой стресс-реактивностью.  Ось абсцисс доли в масштабах ядра, ось ординат - удельная плотность нейронов.

При прочих равных в гипоталамусе в большей степени подвергаются морфофункциональным преобразованиям эволюционно молодые, лучше васкуляризованные и более функционально нагруженные области. Выявленные закономерности в целом не противоречат общим представлениям о нейроморфологии стресса [Крыжановский Г.Н., 2001; Зиматкин С.М., с соавт., 2003; Schiltz J.C., Sawchenko P.E., 2002; Ajmone-Cat M.A., et al., 2002; McGill B.E., et al., 2006; Ostrander M.M., et al., 2006].

Следующий вопрос, требующий обсуждения, - возможные пути и механизмы деплеции нейронов при стрессорном повреждении.

Во-первых, наблюдаемая в наших опытах при стрессе степень повреждения нейронов ни в одном из ядер и полей гипоталамуса не была фатальной. Оставшийся объем нейронов был вполне достаточен для выполнения функции ядра и поддержания его структурно-функциональной целостности.  При этом степень повреждения существенно варьировала (от 2,9%-5,0% (то есть статистически недостоверного), до 25%-30%, что могло рассматриваться как повреждение средней степени с серьезными последствиями для самого ядра и организма в целом.

У животных НСР группы максимальные изменения фиксировались в VM (22%), DM (16,5%), PeV, SO, PV, SuM, PMd  и латеральном гипоталамическом поле (все в пределах 11% -14,3%). У животных с высокой стресс-реактивностью степень повреждения в VM (21,8%) и PMd (12,1%) была аналогичной, в SO (22%), PV (25,6%), SuM (29,8%) - оказывалось значительно выше, а в PeV, SCh  и DM - достоверно ниже, в сравнении с этими же показателями в НСР группе.

Таким образом, анализ степени стрессорного повреждения выявил несколько структур гипоталамуса, «актуальных» с точки зрения стресс-реактивности. Наиболее поражаемыми при стрессе являлись нейроны (в порядке убывания) в следующих ядрах гипоталамуса: паравентрикулярное, супрамамиллярное, вентромедиальное, супраоптическое.

Нами на основании математического анализа были выделены несколько ключевых изменений, связанных как со стрессом, так и различиями в стресс-реактивности животных.

1. Высокая стресс-реактивность ассоциируется с увеличением степени повреждения нейронов, уменьшением ОД  нейронов и СО их ядер, что характерно для SO, PV, SuM, PMd.

2. Высокая стресс-реактивность ассоциируется с уменьшением степени повреждения нейронов, уменьшением ОД  нейронов и СО их ядер, что характерно для  SCh и DM.

3. Высокая стресс-реактивность ассоциируется с более выраженной микроглиальной реакцией, что характерно для SO, PV и SuM.

4. Высокая стресс-реактивность ассоциируется с менее выраженной микроглиальной реакцией, что характерно для DM и PMd.

Интересно, что такие исследованные показатели, как тканевое распределение нейрональной нитроксидсинтазы и  ее соотношение с эндотелиальной изоформой, тирозингидроксилазы (дофаминергического представительства) и глутаматного рецептора не позволили прийти к сколько-нибудь однозначному заключению об их роли в нейрональном повреждении при стрессе, тем более – о его зависимости от стресс-реактивности.

При наличии стрессорного повреждения основная реакция в ядрах гипотатамуса, на наш взгляд, связана с изменением межклеточного взаимодействия микроглия нейрон.

Большая сложность организации нейропиля ретрохиазмальной и латеральной гипоталамической области является одним из доказательств большего значения внешних связей гипоталамуса с таламусом и фронтальными областями коры головного мозга в обеспечении высокой стресс-реактивности в сравнении с нервными внутригипотамическими связями.

Изменения нервных волокон и нервных проводников характеризовались набуханием, гомогенизацией, избыточной аргирофилией и частичной фрагментацией. Максимальным изменениям подвергались нисходящие таламические волокна и эфферентные пути самого гипоталамуса, меньшему повреждению - афферентные восходящие волокна и гипоталамо-гипофизарные связи. На всем протяжении гипоталамуса, с постепенным уменьшением к преоптической области и усилением в вентральных отделах, обнаруживались мелкие и более крупные участки микроглиоза. В зонах максимального повреждения нейронов (PV, VM, SuM) возможно было появление мелких групп гипертрофированных микроглиоцитов, иногда с образованием зернистых шаров. Степень микроглиальной реакции была пропорционально степени нейронального повреждения и, соответственно, убывала в ряду PV, SO, VM, SuM > передняя и наружная группы ядер > PeV, RCh, AHL, PMd > POM, DM, ARC > остальные ядра преоптической области и мамиллярного комплекса.

При иммуногистохимическом окрашиванием на кислый глиальный протеин мы показали, что при стрессе наблюдается уменьшение фактора формы проводников, снижение отношения яркостей GLAP/матрикс более чем на треть в ВСР группе и на 45% - в ВСР, а также снижение объемной доли GLAP-позитивного материала.

Как известно, именно в сохранности проводников усматривается пролонгация работы стресс-системы на высоком уровне активности. При стрессе  нейроны латеральной области быстро истощаются и становятся гипосекреторными [Талалаенко А.Н. с соавт., 2001; Bruses J.L., Rutishauser U., 1998; Kiss A., 2007; McCormick C.M., et al., 2007].

В любом ядре ГМ астроглия, олигодендроглия и микроглиоциты весьма плотно упакованы, но взаимодействие между этими клетаками не в полной мере определяется плотностью этой упаковки [Krasowska-Zoladek A., et al., 2007].

Обычно астроциты и микроглия клет­ки реагируют на повреждение нейронов репликацией. Они участвуют в удалении продуктов распада и восстановлении тканевых взаимоотношений. На пер­вом этапе микроглиальные клет­ки и макрофаги, которые проникают в по­врежденный участок ЦНС из крови, соответственно делятся и удаляют продукты распада умирающих клеток [Block M.L. et al., 2007; Taner D.,  et al., 2007].

Сразу после повреждения ЦНС микроглиаль­ные клетки мигрируют к месту повреждения со скоростью около 300 мкм/час, аккумули­руются на этом месте и фагоцитируют повре­жденную ткань. Гибридизация in situ и иммунохимические реакции показали, что микро­глиальные клетки продуцируют в месте по­вреждения ламинин — молекулу экстраклеточного матрикса, которая способ­ствует росту нейритов в культуре и in vivo.

Интересно, что глиальные клетки играют важную роль в захвате медиаторов в ЦНС, как при физиологических, так и при пато­логических условиях. Система транспорта, сосредоточен­ная в глиальных клетках, играет ключевую роль в предотвращении избыточного накоп­ления глутамата во внеклеточном простран­стве и гибели нейронов от эксайтотоксичности [Москалева Е. Ю., Северин С. Е., 2006].

При повреждении ГМ, в том числе стрессорном, глиальные клет­ки начинают выделять глутамат во внекле­точное пространство. Поврежденные и погиба­ющие нервные клетки освобождают глута­мат и К+, деполяризуют глиальные клетки и другие нейроны, кото­рые в свою очередь освобождают еще больше глутамата [Чехонин В.П., с соавт., 2007; Block M.L. et al., 2007].

В подтверждение этому, в структурах медиального гипоталамуса (DM, VM), имеющих высокий процент глутаматцептивных нейронов, мы наблюдали  максимальную степень повреждения нейронов при стрессе.

Еще одним из механизмов участия глиальных клеток в стрессорном повреждении нейронов гипоталамуса является их близкое расположение к элементам гематоэнцефалического барьера. Он располагается в местах со­единения между эндотелиальными клетками кро­веносных капилляров в мозге. Для того, чтобы проникнуть из крови в мозг, молекулы должны пройти че­рез эндотелиальные клетки, а не между ними. Взаимодействия между астроцитами и эндотелиальными клетками мозго­вых капилляров носят специфический харак­тер [Kwon M.S.,  et al., 2006; Taner D.,  et al., 2007; Lay A.J., et al., 2007].

Анализ эффектов, вызываемых гипоталамусом, крайне сложен ввиду раз­нообразия рецепторов и большого числа пептидов и непептидных медиаторов. Гипоталамус является областью мозга, управляющей общей активностью вегета­тивной нервной системы, а также регули­рующей секрецию гормонов. Но и сам он подвержен многоступенчатому влиянию со стороны высших центров ЦНС, периферических афферентов и гор­монов.

Тем не менее, мы считаем, что выявленные нами особенности строения гипоталамуса в связи со стресс-реактивностью и происходящих в нем при стрессе изменений, в свою очередь, определяют общую выраженность и течение стрессорной реакции.

Гипоталамус регулирует практически все интегративные вегетативные функции, включая температу­ру тела, аппетит, потребление воды, дефека­цию, мочеиспускание, частоту сердечных со­кращений, артериальное давление, половую деятельность, лактацию, а также, в более мед­ленной временной шкале, рост тела. Именно в нем эмоции сопрягаются с вегетативными ответами: мысль о пище приводит к секре­ции слюны, ожидание физической нагруз­ки - к повышению симпатической актив­ности и т. д. Одним из механизмов такого сопряжения является нормирование силы и скорости ответа, то есть формирование ритмики жизнедеятельности [Акмаев И.Г. с соавт., 2003, 2005; Gibson L.E. et al., 2006; Lowry C.A. et al., 2007; Stone E.A., et al., 2007; Ulrich-Lai Y.M., et al., 2007].

В одном исследовании проследить и спрогнозировать вовлеченность стресс-реактивности во все перечисленные процессы практически невозможно. Однако сопоставление особенностей строения ядер с их функцией позволяет считать, что животные с высокой стресс-реактивностью в силу особеностей строения PV, SO и SuM обладают более выраженным и относистельно непродолжительным эндокринным пиком, известным как триггерная реакция стресса. Изменения в этих ядрах при стрессе преимущественно определяются не их исходным строением, а повышенной нагрузкой на них в первую фазу стресса. Особенности строения SCh, DM и  PMd обеспечивают у них же устойчивое развитие тормозных реакций и стресс-лимитацию. Изменения в других структурах гипоталамуса, равно как и особенности их строения, скорее всего, вторичны, и не носят принципиального характера с точки зрения морфологического субстрата стресс-реактивности.

Сами же по себе стресс-индуцированные изменения в нейронах любой области гипоталамуса при стрессе, как и следует из концепции этого процесса, строго неспецифичны, укладываются в общую схему патоморфологии нервной системы и могут иметь аналитическое значение только при их сопоставлении по локализации, интенсивности и по времени возникновения, а также в сравнении с изменениями других органов и систем.





ВЫВОДЫ

1. Животные с высоким и низким уровнем стресс-реактивности имеют предсуществующие (вне стрессового воздействия) особенности строения отдельных ядер и полей гипоталамуса. Наиболее вариабельными структурами гипоталамуса в связи со стресс-реактивностью у интактных животных в отношении плотности и размеров расположения нейронов, объема нейронного окружения, количества астро- и микроглии являются медиальное преоптическое, супраоптическое, супрахиазматическое, дорсомедиальное, супрамамиллярное ядра, а также нейропиль ретрохиазмальной и латеральной гипоталамической областей.

2. В зависимости от выявленных различий в строении нейронов, сложности организации и характера нейронного окружения, основные (актуальные) ядра гипоталамуса у животных с высокой стресс-реактивностью могут быть отнесены к одной из четырех групп: сложноорганизованные «сильные» ядра с потенциально высокой устойчивостью к повреждению (супрахиазматическое, аркуатное, супрамамиллярное и вентральная часть премамиллярного ядра), «сильные» со сниженной потенциальной резистентностью (паравентрикулярное и дорсомедиальное), «слабые» с высокой резистентностью (супраоптическое и перивентрикулярное ядра) и «слабое» с низкой резистентностью (медиальное преоптическое ядро).

3.  Нейроны супрахиазматическиого и супраоптического ядер гипоталамуса животных с высокой стресс-реактивностью обладают общими ультраструктурными особенностями, заключающимися в относительно большей доли эухроматина в структуре ядра, в отсутствии инвагинаций кариолеммы, большей плотности органелл в цитоплазме перикариона, мономорфности митохондрий и относительно меньшей плотности их матрикса. Эти особенности в своей совокупности отражают более высокую функциональную активность и лабильность этих клеток при стрессорных стимулах.

4. Относительно высокая экспрессия нейрональной нитроксидсинтазы NOS-1 при сниженной экспрессии эндотелиальной нитроксидсинтазы NOS-3 является одним из ключевых особенностей ядер переднего гипоталамуса у крыс с высокой стресс-реактивностью. Наиболее выраженная вариабельность в экспрессии нитроксидсинтаз в зависимости от стресс-реактивности характерна для медиального преоптического, супраоптического и паравентрикулярного ядер.

5. Сочетание относительно высокой экспрессии тирозингидроксилазы (катехоламинергическое представительство) и низкой экспрессии рецептора GR2 (глутаматцептивное представительство) относятся к ключевым особенностям ядер среднего гипоталамуса, что в максимальной степени характерно для дорсомедиального ядра.

6. Наибольшая вариабельность строения нейропиля животных с различной стресс-реактивностью характерна для ретрохиазмальной и латеральной гипоталамической областей, и заключается в его более сложной организации, более плотном расположении волокон, почти вдвое большем показателе извитости волокон и большей экспрессии кислого глиального протеина GFAP.

7. При стрессе у крыс слабая или умеренная степень повреждения регистрируется не во всех ядрах гипоталамуса. Изменения в нейронах имеют неспецифический характер и мозаичны по выраженности у соседних клеток, причем различия в степени повреждения у животных с высокой и низкой стресс-реактивностью не полностью совпадают с различиями в строении этих ядер. В большей степени при стрессе у животных с высокой стресс-реактивностью повреждаются супраоптическое ядро (ВСР – 22%, НСР – 14,3%), паравентрикулярное ядро (ВСР – 25,6%, НСР – 13,8%) и супрамамиллярное ядро (ВСР -29,8%, НСР – 14,8%). Меньшая степень повреждения для животных с высокой стресс-реактивностью характерна для перивентрикулярного ядра (ВСР – 6,1%, НСР – 11%), супрахиазматического ядра (ВСР - 3,4%, НСР – 7,1%), дорсомедиального ядра (ВСР – 7,2%, НСР – 16,5%). При относительно высокой степени повреждения в вентромедиальном ядре (22%) и умеренной - в дорсальной части премамиллярного ядра (12%), они от стресс-реактивности  не зависели.

8. На ультраструктурном уровне изменения в нейронах супраоптического и супрахиазматического ядер гипоталамуса при стрессе заключаются в основном в увеличении числа митохондрий, увеличении структурированности их крист, возрастании зернистости матрикса, увеличении числа рибосом и элементов эндоплазматического ретикулума. Эти изменения вместе с признаками истощения секреторных гранул были более выражены у крыс с высокой стресс-реактивностью.

9. У крыс с высокой стресс-реактивностью исходно высокая экспрессия нейрональной нитроксидсинтазы при низком содержании эндотелиальной изоформы NOS-3 в супраоптическом и паравентрикулярном ядрах гипоталамуса сопровождается при стрессе еще большим приростом экспрессии нейрональной изоформы NOS-1 (до 70% позитивных нейронов), что соответствует более высокой степени повреждения нейронов в этих ядрах, которое было подтверждено морфологически.

10. По данным корреляционного анализа, выявлены многочисленные связи между морфометрическими характеристиками ключевых ядер гипоталамуса и количественными показателями стресс-реактивности. У животных с высокой стресс-реактивностью значение более плотного расположения нейронов выявлено у супрахиазматического, дорсомедиального, аркуатного, супрамамиллярного ядер и вентральной части премамиллярного ядра. Менее плотное расположение нейронов оказалось значимым у медиального преоптического, перивентрикулярного и супраоптического ядер. Значение более сложной организации микроокружения было доказано для супраоптического, супрахиазматического, паравентрикулярного, дорсомедиального и аркуатного ядер, менее сложно организованной -  для перивентрикулярного ядра.

11. Более высокое количество микроглии оказалось значимым у крыс с высокой стресс-реактивностью только в дорсомедиальном ядре и дорсальной части премамиллярного ядра. Относительно малое количество микроглии было характерно для всех остальных исследованных ядер гипоталамуса.

12. При сохранении общего характера минимальных изменений или умеренного повреждения нейронов в конкретном ядре гипоталамуса стресс-индуцированные изменения определяются, при прочих равных условиях, сложностью его исходной организации, микроглиальным представительством, эволюционной зрелостью, медиаторным представительством и функциональным предназначением в стрессовой системе.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ

ПО ТЕМЕ ДИССЕРТАЦИИ

1. Писарев В.Б., Ерофеев А.Ю., Потанин М.Б. Морфофункциональная харак­теристика коры и подкорковых структур головного мозга крыс при стрессе // Вестник Волгоградской медицинской академии. -  1995. - №1. - С.15-17.

2. Писарев В.Б., Тума­нов В.П., Ерофеев А.Ю., Потанин М.Б. Роль различных иерархических структур головного мозга при психоэмоциональном перена­пряжении // Бюлл. эксп. биол. и медицины. -  1995. - №5. – С. 29-33*.        3. Потанин М.Б. Морфофункциональная характеристика коры головного мозга интактных крыс // Морфология компенсаторно-приспособительных процессов при различных патологических состояниях: Труды Волгоградской мед. академии. - Т. 54, вып. 2. – Волгоград: ВМА, 1998. - С. 123-146.

4. Потанин М.Б. Морфофункциональная характеристика коры головного мозга крыс, подвергнутых хроническому эмоциональному стрессу // Морфология компенсаторно-приспособительных процессов при различных патологических состояниях: Труды Волгоградской мед. академии.- Т. 54, вып. 2. – Волгоград: ВМА, 1998. - С. 147-159

5. Писарев В.Б., Ерофеев А.Ю., Потанин М.Б. Участие структур головного мозга в развитии психоэмоционального стресса // Теоретические и практи­ческие вопросы медицин­ской профилактики: Сб. научных работ, посвящ. 50-летию Волгоград­ского ОЦМП. - Волгоград, 1998. - С.105-107.

6. Писарев В.Б., Потанин М.Б. Морфофункциональное состояние головного мозга стресс-неустойчивых животных при иммобилизационном стрессе // Морфология  компенсаторных и приспособительных процессов при действии стрессорно-повреждающих факторов внешней среды: Труды Волгоградской мед. академии. – Т. 57, вып.2. – Волгоград: ВМА, 2001. – С.101-112.

7. Потанин М.Б., Писарев В.Б., Гуров Д.Ю. Патоморфологические изменения в центральной нервной системе при наркотической зависимости // Морфология  компенсаторных и приспособительных процессов при действии стрессорно-повреждающих факторов внешней среды: Труды Волгоградской мед. – Т.57, вып.2. – Волгоград: ВМА, 2001. – С.112-115.

8. Писарев В.Б., Гуров Д.Ю., Потанин М.Б. Морфологичеcкое и иммуногистохимическое исследование стриопаллидарной и лимбической систем головного мозга крыс с индивидуальной предрасположенностью к алкогольной зависимости // Вестник Волгоградского гос. мед. ун-та. – 2004. – №10. – С. 3-6*.

9. Потанин М.Б., Писарев В.Б. Морфофункциональная характеристика центральной нервной системы в норме и при токсикологическом эксперименте // Морфол. ведомости. – 2004. - N1-2 (прилож.). – С. 83*.

10. Потанин М.Б., Писарев В.Б. Характеристика изменений в центральной нервной системе при наркотической зависимости // Морфология – 2004. – N4. – С. 101*.

11. Писарев В.Б., Гуров Д.Ю., Потанин М.Б., Смирнов А.В. Вариативность индивидуальной организации подкорковых образований головного крыс, конституционально склонных и не склонных к наркотизации // Тез. докл. III Росс. Конгресса по патофизиологии России. – М., 2004. – C. 16.

12. Смирнов А.В., Писарев В.Б., Гуров Д.Ю., Потанин М.Б. Стереометрические и иммуногистохимические изменения в гигантоклеточных ретикулярных ядрах ствола головного мозга растущих крыс под влиянием стрессового воздействия // Тез. докл. III Росс. Конгресса по патофизиологии России. – М., 2004. – C. 159.

13. Писарев В.Б., Новочадов В.В., Гуров Д.Ю., Потанин М.Б. Современные подходы к оценке морфологии промежуточного мозга при конституциональной предрасположенности к алкогольной зависимости // Морф. ведомости. – 2004. – N3-4. – С. 23-24*.

14. Потанин М.Б. Нейроглиальные взаимоотношения в ядрах передней гипоталамической области животных с конституциональной склонностью к потреблению этанола // Бюлл. Волгоградского научного центра РАМН. – 2004. – N3. – С. 12-13.

15. Потанин М.Б. Особенности нейро-глиальных взаимоотношений в гипоталамической области животных с конституциональной склонностью к потреблению этанола // Нейронауки: теоретические и клинические аспекты (Украина). – 2005.  – N1. – С. 43-44.

16. Писарев В.Б., Гуров Д.Ю., Потанин М.Б., Новочадов В.В. Новые подходы к изучению структурных основ конституционального аддиктивного поведения // Бюллетень сибирской медицины. – 2005. – Т. 4 (прил. 1). – С. 75.

17. Гуров Д.Ю., Писарев В.Б., Новочадов В.В., Потанин М.Б. Радиальная морфометрия нейронов в оценке конституционально обусловленных особенностей структур промежуточного мозга // Вестник ВолГМУ – 2005. - N1. – С.  6-8*.

18. Потанин М.Б. Супрахиазматическое ядро гипоталамической области: особенности строения, связанные с выской неспецифичексой резистентностью организма // Вестник ВолГМУ. – 2005. - №4. – С. 45-47*.

19. Потанин М.Б. Структурная вариабельность нейронов маммилярного комплекса крыс с различной конституциональной стресс-реактивностью // Вестник ВолГМУ. – 2007. - №2. – С. 24-28*.

20. Потанин М.В., Туманов В.П., Писарев В.Б. Особенности ультраструктуры нейронов супрахиазматического ядра гипоталамуса у крыс с различной стресс-реактивностью // Бюл. экспер. биол. и медицины. – 2007. - №11.  – №11. - С. 495-500*.

* - журналы, рекомендуемые ВАК РФ для опубликования материалов диссертаций на соискание ученой степени доктора наук (медицинские науки)

Подп. в печать 30.04.08. Формат 60 х 84/16 Бум. пл. 80 г/м2.

Печать офсетная.  Усл. печ. л. 2.0  Тираж 100. Заказ 58.

Волгоградский государственный медицинский университет,

400131, Волгоград, Пл. Павших борцов, 1.






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.