WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

 

На правах рукописи

Глущенко Григорий Анатольевич

СОВЕРШЕНСТВОВАНИЕ И МОДЕЛИРОВАНИЕ ПРОЦЕССА ПНЕВМОСЕПАРИРОВАНИЯ РУШАНКИ

ПОДСОЛНЕЧНЫХ СЕМЯН

Специальность 05.18.12 – Процессы и аппараты пищевых производств

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата технических наук

Краснодар – 2012

Работа выполнена в ФГБОУ ВПО «Кубанский государственный технологический университет» (ФГБОУ ВПО «КубГТУ»)

Научный руководитель:

доктор технических наук, профессор,

Деревенко Валентин Витальевич

Официальные оппоненты:

Шаззо Аслан Юсуфович, доктор технических наук, профессор, ФГБОУ ВПО «КубГТУ», директор Института пищевой и перерабатывающей промышленности

Ветелкин Геннадий Васильевич, кандидат технических наук, Кубанский филиал КФ ГНУ ВНИИЗ Россельхозакадемии, директор

Ведущая организация:

Северо-Кавказский филиал ГНУ ВНИИЖ Россельхозакадемии, г. Краснодар

Защита диссертации состоится 30 октября 2012 года в 13:00 на заседании диссертационного совета Д 212.100.03 при Кубанском государственном технологическом университете по адресу: 350072, г. Краснодар,  ул. Московская, 2, ауд. Г-248.

С диссертацией можно ознакомиться в библиотеке Кубанского государственного технологического университета

Автореферат диссертации разослан 28 сентября 2012 года

Ученый секретарь

диссертационного совета,

кандидат технических наук, доцент        М.В. Филенкова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. В настоящее время в РФ переработку семян подсолнечника осуществляют более 200 маслодобывающих предприятий, из которых 14 маслоэкстракционных заводов (МЭЗ) имеют производительность более 1000 тонн в сутки по семенам подсолнечника, 12 заводов перерабатывают от 500 до 1000 тонн в сутки и 75 заводов – более 100 тонн в сутки. Подготовка семян подсолнечника к извлечению масла на большинстве предприятий ведется по типовой схеме рушально-веечного цеха (РВЦ). Обрушивание семян и разделение рушанки осуществляется в рушально-веечном агрегате, состоящем из бичевой семенорушки и семеновеечной машины Р1-МС-2Т, которая включает рассев и пятиканальную аспирационную камеру, где отделяют частички лузги наклонным воздушным потоком с получением ядровой фракции, недоруша, перевея и лузги. На участке контроля перевея и лузги используются семеновеечные машины, при этом рециклический поток перевея в РВЦ составляет около 20 % от производительности завода по перерабатываемым семенам, а количество отводимой из производства лузги 15–17 %. Основные безвозвратные потери масла с лузгой формируются на этапе разделения рушанки наклонным воздушным потоком в аспирационной камере семеновеечной машины за счет выноса частичек ядра в лузгу, достигающего 1 % и более при нормативных потерях не более 0,4 %. Только за счет выноса ядра с лузгой на 0,5 % сверх норматива МЭЗ производительностью 500 тонн в сутки теряет с лузгой не менее 82,8 тонн масла в год, что в стоимостном выражении составляет 2,48 млн рублей (при оптовой стоимости 30 рублей за 1 кг масла).

Теоретические основы процесса разделения воздушным потоком зернового сырья, в том числе масличных семян и их компонентов, а так же разработка соответствующего оборудования отражены в работах А.Я. Малиса, А.Д. Демидова, А.Б. Демского, В.Ф. Веденьева, Е.В. Семенова, В.А. Масликова, В.В. Белобородова и ряда других ученых.

Разработка ресурсосберегающих технических решений по совершенствованию действующего технологического оборудования и создание высокоэффективного пневмосепаратора, обеспечивающие снижение выноса ядра в лузгу и исключение из схемы РВЦ контрольных операций фракций перевея и лузги, основанные на экспериментальном исследовании аэродинамических свойств частиц рушанки семян подсолнечника, процесса их разделения вертикальным воздушным потоком и математическом моделировании стесненного движения частичек рушанки в аэросепараторе, являются актуальными задачами.

Научная работа выполнялась по гос. контракту №П424 «Научное обоснование и разработка ресурсосберегающих технических решений по совершенствованию рушально-веечного цеха маслоэкстракционного завода» (научный руководитель аспирант Глущенко Г.А.) в рамках ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009 – 2013 годы, по хоз. договору №6.34.03.03 - 2008 г. «Разработка технологических решений (раздел ТХ) для маслоэкстракционного завода производительностью 1000 т/сутки семян подсолнечника» с ООО "Инпротех" (проектный институт) и при материальной и финансовой поддержке ООО «Экотехпром», которое безвозмездно предоставило промышленный аэросепаратор МКА-400 для проведения исследований.

Цель и задачи диссертационной работы. Цель работы – научно-техническое обоснование процесса разделения фракционированной рушанки семян подсолнечника вертикальным воздушным потоком и совершенствование пневмосепаратора, обеспечивающие снижение выноса ядра в лузгу, исключающие образование фракции перевея и участок контроля лузги в типовой схеме РВЦ.

В соответствии с поставленной целью сформулированы следующие задачи исследования:

  • экспериментально изучить скорость витания компонентов рушанки семян подсолнечника заводской смеси;
  • определить в производственных условиях типового РВЦ основные параметры работы семеновеечной машины Р1-МС-2Т – нагрузку по рушанке для каждого раздела пятиканальной аспирационной камеры, ее фракционный и компонентный состав, необходимые для обоснования режимов работы при испытании в стендовых условиях промышленного аэросепаратора МКА-400;
  • экспериментально исследовать в стендовых условиях аэродинамические условия работы промышленного аэросепаратора МКА-400 и его усовершенствованную конструкцию;
  • экспериментально исследовать процесс отделения лузги из рушанки воздушным потоком в усовершенствованном аэросепараторе в стендовых условиях;
  • разработать математическую модель стесненного движения частичек рушанки в приемном устройстве и вертикальном пневмосепарирующем канале аэросепаратора и определить его рациональные конструктивно-технологические параметры;
  • разработать методику инженерного расчета аэросепаратора для разделения рушанки;
  • разработать технические решения по совершенствованию пневмосепараторов для разделения рушанки и семеновеечной машины Р1-МС-2Т.

Научная новизна. Экспериментально определена средняя скорость витания частичек лузги и ядра рушанки семян подсолнечника заводской смеси, а также сечки, недоруша и масличной пыли. Впервые получены зависимости для расчета средней скорости витания от среднего диаметра частиц лузги и ядра различных фракций.

Выполнены экспериментальные исследования функционирования усовершенствованного аэросепаратора в стендовых условиях. Получена зависимость для расчета потерь полного давления и исследовано влияние основных конструктивно-технологических параметров на эффективность отделения лузги из фракций рушанки воздушным потоком.

Развиты представления о механизме движения частичек рушанки в приемном устройстве и пневмосепарирующем канале с учетом их стесненного движения на основании экспериментальных исследований и разработанной позонной математической модели, учитывающей начальную скорость движения частичек, удельную нагрузку, угол наклона приемного устройства, силы тяжести и трения, а так же аэродинамического сопротивления воздушного потока. Полученные результаты позволили рассчитать среднюю скорость и определить путь, пройденный частичками при стесненном движении в приемном устройстве и вертикальном пневмосепарирующем канале, а также установить рациональные конструктивно-технологические параметры усовершенствованного аэросепаратора.

Математическая модель идентифицирована по собственным экспериментальным данным, которые получены киносъемкой.

Практическая значимость. Разработаны технические решения, новизна которых подтверждена одним патентом на изобретение РФ №2397027 «Пневмосепаратор для отделения аэроуносимых частиц» и двумя патентами на ПМ РФ №78794 «Пневмосепаратор» и №88020 «Аэросепаратор для отделения лузги».

Показано, что модернизация семеновеечной машины с использованием разработанных технических решений позволяет исключить образование фракции перевея и соответственно исключить участки контроля перевея и лузги из схемы РВЦ.

Разработана методика инженерного расчета аэросепаратора для разделения рушанки, в основу которой положена полученная математическая модель сложного движения частичек рушанки.

Технические разработки (патенты РФ №2397027, №78794) соответственно удостоены серебряных медалей на XIV и XV Международном салоне изобретений и инновационных технологий «АРХИМЕД – 2011» и «АРХИМЕД – 2012» г. Москва. Автор удостоен дипломом 1-й степени и награжден золотой медалью на краевом конкурсе «На лучшую научную и творческую работу преподавателей, аспирантов и студентов высших учебных заведений Краснодарского края за 2011 г.»

Технические разработки использованы: ООО «Инпротех» (проектный институт) в рабочем проекте маслоэкстракционного завода производительностью 1000 т/сут по семенам подсолнечника для  ЗАО «Сорочинский комбинат хлебопродуктов» Оренбургская обл.; ООО «Экотехпром» в предпроектном решении «Разработка технических предложений по реконструкции рушально-веечного цеха» для Усть-Лабинского ЭМЭК ЗАО «Флорентина» и в технических предложениях по реконструкции РВЦ, разработанных в рамках ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009 – 2013 годы для Бейсугского маслозавода
ЗАО фирмы «Агрокомплекс».

Апробация работы. Основные результаты исследований докладывались и обсуждались на 9-й и 11-й международных конференциях «Масложировая индустрия» (г. Санкт-Петербург, 2009, 2011 гг.); VII Международной научно-технической конференции «Техника и технология пищевых производств» (г. Могилев, 2009 г.); X Международной конференции молодых ученых «Пищевые технологии и биотехнологии» (г. Казань, 2009 г.); Всероссийской конференции с элементами научной школы «Инструментальные методы для исследования живых систем и пищевых производств» (г. Кемерово, 2009 г.); IV Международной научно-практической конференции «Инновационные направления в пищевых технологиях» (г. Пятигорск, 2010 г.);  V Международной научно-практической конференции молодых ученых и студентов «Интеллектуальный потенциал молодежи XXI века в инновационном развитии современного общества» (г. Усть-Каменогорск, Казахстан, 2012 г.); VII Международной конференции «Масложировой комплекс России: Новые аспекты развития» (г. Москва, 2012 г.), 5-й Всероссийской научно-практической конференции студентов, аспирантов и молодых ученых с международным участием «Технологии и оборудование химической, биотехнологической и пищевой промышленности» (г. Бийск, 2012 г.).

Публикации результатов исследований. Основные положения диссертационной работы опубликованы в 17 научных работах, из них 5 статей в журналах рекомендованных ВАК, одна статья в иностранном издании; получены патенты РФ: один на изобретение и два на полезную модель.

Объем и структура диссертации. Диссертация состоит из введения, пяти глав, заключения, приложений и списка литературных источников из 126 наименований. Общий объем диссертации изложен на 147 страницах, содержит 46 иллюстраций и 3 таблицы.

СОДЕРЖАНИЕ РАБОТЫ

Во введении рассмотрено современное состояние переработки рушанки семян подсолнечника на маслодобывающих заводах, обоснована актуальность темы диссертации, сформулированы научная новизна и практическая значимость выполненных исследований.

В первой главе проведен аналитический обзор информационных источников о современном состоянии техники разделения сыпучих материалов воздушным потоком, в том числе рушанки семян подсолнечника. Проанализированы на основе системного подхода структурные схемы типового рушально-веечного цеха (РВЦ) маслодобывающих предприятий РФ, фирм «Buhler» и «Allocco», конструктивные особенности технологического оборудования для разделения рушанки, пневмосепарирующего оборудования и теоретические аспекты пневмосепарирования сыпучих материалов. Проведенный анализ позволил обосновать выбор объекта исследования, сформулировать цели и задачи диссертационной работы.

Во второй главе и далее объектами исследования были компоненты

рушанки и рушанка семян подсолнечника заводской смеси влажностью от 6,8 до 7,0 %, отобранные на Белореченском МЭЗ в 2008 г., на Бейсугском МЗ в 2009 г., на МЖК «Краснодарский» в 2010 г. (Краснодарский край) и на ЗРМ «Новохоперский» Воронежской области в 2011 г.

Изучение скорости витания частичек лузги и ядра проведено в стеклянной вертикальной цилиндрической трубе с внутренним диаметром 57 мм и длиной 1 метр на стендовой установке. Для выравнивания скорости воздушного потока были установлены две сеточки в нижней части воздуховода перед стеклянной трубой. Скорость воздушного потока измеряли термоанемометром АТТ-1004 с точностью до 0,1 м/с.

Объектами исследования были откалиброванные 5 фракций частичек лузги и 3 фракции ядра следующих характеристик: сход с сита/ проход через сито с отверстиями диаметром (), мм: лузга: 1-я фракция – 3/4; 2-я – 4/5; 3-я – 5/6; 4-я – 6/7; 5-я – 7/8; ядровая фракция: 7-я – 3/4; 8-я – 4/5; 9-я – 5/6. Из каждой фракции лузги и ядра подряд отбирали по 50 штук частиц и при пятикратном повторении определяли их среднюю скорость витания (выполнено более 2500 измерений). Относительная ошибка средних измерений для частиц лузги не превышала ±6,9 %, а для ядровой фракции ±9,7 %.

Среднюю скорость витания частичек лузги можно описать ступенчатой функцией (1), а частичек ядра – уравнением (2) в зависимости от их среднего диаметра:

(1)

(2)

Здесь dср – средний диаметр частиц, который определяли как среднеарифметическую величину двух граничных размеров – диаметры

отверстий сита для проходовой и сходовой фракций.

Расхождения между рассчитанными по уравнениям (1) и (2) и экспери­ментальными данными соответственно не превышают ±14,6 % и ±13,6 %.

Как видно из рисунка 1, c увеличением среднего диаметра частичек лузги от 3,5 до 7,5 мм скорость витания увеличивается от 1,8 до 4,5 м/с, а для частичек ядровой фракции с средним диаметром 3,5; 4,5 и 5,5 мм повышается от 5,0 до 9,8 м/с. При этом важно отметить, что вариационная кривая 6 – распределения скорости витания масличной пыли (проход через сито 3 мм, сход с сита 2 мм) занимает промежуточное положение с пересечением вариационных кривых фракций лузги 4, 5 и недоруша 10, что требует предварительного отделения масличной пыли из рушанки.

Рисунок 1 - Вариационные кривые скорости витания: 1, 2, 3, 4, 5 – соответственно фракции частичек лузги с dср: 3,5; 4,5; 5,5; 6,5 и 7,5 мм; 6 – масличная пыль; 7, 8, 9 – соответственно фракции частичек ядра с dср: 3,5; 4,5 и 5,5 мм; 10 – недоруш.

В третьей главе определены в производственных условиях основные параметры работы семеновеечной машины Р1-МС-2Т – нагрузка по рушанке для каждого раздела пятиканальной аспирационной камеры, фракционный и компонентный состав каждой фракции с целью обоснования рабочих параметров и проведены испытания промышленного аэросепаратора МКА-400 в стендовых условиях. Изучение параметров работы семеновейки Р1-МС-2Т проводилось на ОАО «МЖК Краснодарский» при переработке заводской смеси семян подсолнечника урожая 2010 г. Замеренная производительность рушально-веечного агрегата, состоящего из бичевой семенорушки марки МРН и семеновейки, составила 66,4 тонн в сутки по семенам подсолнечника (паспортная производительность – 70 т/сут). Относительная ошибка среднего измерения нагрузки для каждого раздела, рассчитанная по пяти параллельным замерам, колебалась в интервале 4,4 – 10,5 %.

Выявлено, что нагрузка по рушанке в разделах аспирационной камеры неравномерна и колеблется от 125 до 902 кг/ч, при этом количество масличной пыли (проход через сито диаметром 3 мм) в неветровом разделе достигает до 28 %, недоруша до 33 %, а нагрузка по свободной лузге существенно изменяется от первого до пятого разделов соответственно от 249,2 до 30,1 кг/ч.

Установлен фракционный и компонентный состав рушанки по содержанию ядровой фракции, свободной лузги, недоруша и сечки недоруша в зависимости от среднего диаметра частиц для каждого раздела аспирационной камеры. Содержание свободной лузги в каждой фракции рушанки составляло от 13,6 до 27,6 %, а содержание масличной пыли изменялось от 0,2 % в первом разделе (недоруш) и до 53,3 % в пятом разделе. Полученные результаты позволили обосновать фракционный и компонентный состав модельных образцов рушанки, использованных при исследовании работы аэросепаратора МКА-400 в стендовых условиях.

В стендовых условиях изучена неравномерность изменения скорости воздушного потока по высоте пневмосепарирующего канала промышленного аэросепаратора МКА-400 в пяти горизонтальных сечениях. В каждом сечении в 42 точках дифференциальным микроманометром ДМЦ-О измеряли скорость воздушного потока. В зоне ввода материала в пневмосепарирующий канал установлена заметная неравномерность воздушного потока, достигающая от 80 до 95%, что в определяющей степени обусловлено условиями подвода воздуха, положением рабочих заслонок и длиной выступающего участка горизонтального сита в вертикальном пневмосепарирующем канале, по которому в него поступает рушанка.

На основании проведенных исследований была усовершенствована конструкция аэросепаратора МКА-400. Во-первых, перемонтировали сито с горизонтальным участком в приемное устройство. Во-вторых, переделали фиксатор, регулирующий угол наклона приемного устройства. Внесенные изменения позволили сократить неравномерность поля скоростей воздушного потока на 48 % и уменьшить угол наклона приемного устройства до 20 (в паспорте не менее 55 для перевея), что обеспечило снижение скорости движения частичек рушанки, поступающих в пневмосепарирующий канал.

В стендовых условиях изучена аэродинамическая характеристика усовершенствованного аэросепаратора при его работе на чистом воздухе и под нагрузкой на рушанке. Получено эмпирическое уравнение для расчета потерь полного давления:

,

(3)

где – известная эмпирическая зависимость для расчета потери полного давления в пневмосепараторе на чистом воздухе, Па; – коэффициент сопротивления; Q – расход воздуха, м3/с; q – удельная нагрузка по рушанке, кг/(ч·см). Для усовершенствоанного аэросепаратора получена эмпирическая зависимость:

,

(4)

где S1 – площадь рабочего сечения патрубка приемного устройства, см2;  S2 – площадь рабочего сечения патрубка для отвода материала, см2.

Расхождения рассчитанных значений Н по уравнению (3) и экспериментальных данных колеблются в интервале ±(0,4 – 15,5)%, что является достаточно точным при инженерных расчетах пнемосепараторов.

Экспериментально изучен процесс разделения рушанки в стендовых условиях на усовершенствованном аэросепараторе (рис.2). Для проведения киносъемки установили из оргстекла верхнюю крышку приемного устройства и вставки в торцовых и вертикальной стенках пневмосепарирующего канала практически по всей их длине и ширине. Процесс отделения лузги из рушанки в усовершенствованном аэросепараторе исследовали при следующих параметрах: удельная нагрузка по рушанке q=3,3–22,1 кг/(смч); средняя скорость воздушного потока в вертикальном пневмосепарирующем канале U=2,5-4,8 м/с; угол наклона приемного устройства =30-40 °. Экспериментально установлены рациональные режимы процесса, обеспечивающие допустимый вынос ядра в лузгу от 0,15 до 0,3 %, при которых киносъемкой зафиксированы скорость и характер перемещения частичек лузги (рис. 3).

1 – загрузочный бункер; 2 - аэросепаратор; 3 – манометр ДМЦ-О;

4 – осадительная камера; 5 – бункер; 6 – заслонка; 7 – вентилятор.

Рисунок 2 – Стендовая установка с аэросепаратором.

На рис. 3 представлены траектории движения частичек лузги, которые были предварительно окрашены в оранжевый цвет. Точки на каждой траектории показывают нахождение частицы лузги через 1/30 секунды, зафиксированные киносъемкой. Заметное изменение траекторий движения частичек лузги от вертикали связано с соударением частиц между собой, со стенками канала, их вращением, поперечной силой Магнуса-Жуковского, неравномерностью воздушного потока и т.д. Поэтому математическое описание такого сложного движения разновеликих, сложных по форме и со смещенным центром тяжести частичек лузги при большом числе трудноучитываемых факторов в условиях турбулентного режима движения без определенных допущений не представляется возможным.

В четвертой главе разработана позонная математическая модель стесненного движения частичек рушанки в усовершенстованном аэросепараторе.

В аэросепараторе движение частичек рушанки рассматривали последовательно в следующих зонах (рис. 4). Первая зона ограничена длиной сита приемного устройства аэросепаратора, состоящего из двух участков:

а)

б)

Рисунок 3 – Фрагмент схемы траекторий движения частичек лузги, зафиксированных киносъемкой, при удельной нагрузке по рушанке:

а - q=4,9 кг/(ч·см); б - q=13 кг/(ч·см).

наклонного (900 мм) и горизонталь­ного (30 мм). Так как время прохождения час­тички по горизонталь­ному участку сита очень мало, то приняли допу­щение, что на этом уча­стке скорость движения частиц не изменяется и принята за начальную скорость движения во второй зоне. Вторая и третья зоны находятся в пневмосепарирующем канале. Вторая зона – это участок криволинейного движения частичек (переход из горизонтального в вертикальное направление). Третья зона – это участок вертикального движения частичек лузги вверх. В зоне I практический интерес представляет случай, когда и движение частиц с начальной скоростью в однонаправленном потоке воздуха обуславливает замедленное движение по наклонному ситу. Тогда сила трения Fтр больше силы сопротивления воздушного потока R0 и составляющей силы тяжести (рис. 4).

Рисунок 4 – Схема сил, действующих на частицу в аэросепараторе

При замедленном движении уравнение движения частичек вниз можно представить в следующем виде:

.

(5)

В этом случае , где , м/с2;  fс – коэффициент трения стесненного движения частиц рушанки по наклонному ситу, учитывающий трение частиц рушанки о сито, трение между частицами рушанки и трение с металлическими вертикальными стенками приемного устройства, принят как коэффициент идентификации.

После интегрирования уравнения (5) по времени от 0 до , при этом скорость движения частицы изменяется от до , для замедленного движения вниз получено

,

(6)

где .

(7)

Время движения частиц до полной остановки

.

(8)

Путь, пройденный частицами до полной остановки

.

(9)

Параметрическое уравнение движения одиночной частицы в пневмосепараторе, предложенное В.Ф. Веденьевым (зона 2), преобразовали и развили его математическое описание с учетом стесненного движения, основываясь на следующих допущениях: во-первых, рассматривали движение частиц по оси 0Y, которую разместили по высоте канала, а ось 0X – по ширине канала (рис. 4); во-вторых, так как частички поступают в вертикальный канал по горизонтальному участку сита, то их направление движения сориентировано в горизонтальной плоскости и имеет в момент поступления в пневмосепарирующий канал только горизонтальную составляющую скорости; в-третьих, ввели поправочные коэффициенты kX и kY, учитывающие сложное движение частичек при соударении между собой, стенками канала, их вращение и т.п. С учетом вышеизложенного, уравнения движения частицы в координатах X0Y предложено записать в следующем виде:

;

(10)

,

(11)

где – начальная скорость движения частички в зоне 2, определяемая из уравнения (6), м/с.

Путь, пройденный частицей

;

(12)

.

(13)

В случае, если частицы двигаются по горизонтали, если , то частицы падают вниз. В случае, когда , то частицы движутся вверх, который представляет практический интерес при разделении рушанки.

Уравнение вертикального движения частички вверх в восходящем потоке воздуха с учетом сил, действующих на частицу в зоне 3 (рис. 4), можно записать в следующем виде

(14)

где kВ - поправочный коэффициент, учитывающий соударение между частичками лузги, с внутренней поверхностью стенок вертикального канала при движении вверх, сложное вращательное движение, неравномерность воздушного потока и т.п.

После интегрирования уравнения (14) по времени от 0 до , при котором скорость движения частицы изменяется от до , получено

,

(15)

где .

(16)

Путь, пройденный частицами,

.

(17)

Начальную скорость рассчитывали методом последовательного приближения при прочих равных условиях до достижения расхождения 0,01 м/с по уравнениям (10, 11) и по уравнению (15).

Идентификация математической модели движения частиц рушанки в аэросепараторе выполнена на основании собственных экспериментальных данных, полученных киносъемкой, функционирующего усовер­шенствованного аэросепаратора. Коэффициенты идентификации аппроксимированы следующими зависимостями:

;

(18)

;

(20)

;

(19)

,

(21)

где q = 3,3 – 22,1 кг/(ч·см) – удельная нагрузка по рушанке.

– экспериментальные значения;

1,2,3 – рассчитанные.

Рисунок 5 – Изменение скорости движения частичек лузги в вертикальном аспирационном канале от времени.

Полученные зависи­мости для расчета средней скорости движения частиц рушанки в аэросепараторе проверены на адекватность по критерию Фишера.

На рисунке 5 представ­лены: кривая 1, рассчитанная по уравнениям В.Ф. Веденьева для одиноч­ной частицы (рас­хождения с эксперименталь­ными дан­ными от 24,2 до 223,8%), кривая 2, рассчитан­ная по уравнениям (10, 11) для вто­рой зоны и кривая 3, рассчи­танная по уравнению (15) для третьей зоны. По результатам экспериментального исследования и математического моделирования обоснованы рациональные конструктивно-технологические параметры аэросепаратора при заданной q: , U, длина приемного устройства, а также ширина пневмосепарирующего канала.

В пятой главе приве­дено описание разработанных конструкций пневмосепарато­ров, которые предлагается ус­тановить вместо пятиканальной аспирацион­ной камеры в семеновеечной машине Р1-МС-2Т. Для отделения лузги из недоруша и рушанки (первый и второй разделы) использован аэросепаратор, представленный на рисунке 6 (патент на ПМ №88020). Для отделения лузги из рушанки, получаемой в трех последних разделах рассева семеновеечной машины Р1-МС-2Т, использованы пневмосепараторы для отделения аэроуносимых частиц (патент на изобретение №2397027), где предусмотрена возможность регулирования положения перегородок и соответственно оперативного управления скоростью воздушного потока, что обеспечивает снижение выноса ядра в отводимую лузгу (рис. 7).

1- аспирационный канал;

2 - приемное устройство.

Рисунок 6 - Аэросепаратор для отделения лузги

1 -приемное устройство; 2 - аспирационный канал; 3 - осадительная камера.

Рисунок 7 - Пневмосепаратор для отделения аэроуносимых частиц

Предлагаемые технические решения позволяют исключить образование фракции перевея и участок контроля лузги, а также снизить удельные энергозатраты с 9,6 до 8,3 кВт на одну тонну перерабатываемых семян для МЭЗ производительностью 500 тонн в сутки по семенам подсолнечника.

ВЫВОДЫ И РЕКОМЕНДАЦИИ

  1. Экспериментально изучена скорость витания фракционированных частичек рушанки семян подсолнечника заводской смеси: лузги, ядра, недоруша, сечки недоруша и масличной пыли. Результаты представлены в виде вариационных кривых и уравнений для расчета средней скорости витания лузги и ядра семян подсолнечника в зависимости от их среднего диаметра. Скорость витания частиц лузги при изменении dср=3,5–7,5 мм составила 1,8–4,5 м/с; частиц ядра и сечки недоруша при изменении dср=3,5–5,5 мм составила 5,0–9,8 м/с; масличной пыли – 4,1–6,1 м/с, недоруша – 5,4–8,6 м/с.
  2. Определены в производственных условиях основные параметры работы семеновеечной машины Р1-МС-2Т. Нагрузка по рушанке для разделов пятиканальной аспирационной камеры изменялась от 125 до 902 кг/ч, содержание свободной лузги колебалось от 13,6 до 27,6 %, а масличной пыли – от 0,2 до 53,3 %. На основании полученных данных обоснованы удельная нагрузка по рушанке и ее состав при испытании аэросепаратора в стендовых условиях.
  3. Изучены аэродинамические условия работы промышленного аэросепаратора МКА-400 и на основании полученных результатов была усовершенствована его конструкция. Получено уравнение для расчета потерь полного давления усовершенствованного аэросепаратора в зависимости от удельной нагрузки по рушанке, расхода воздуха, площадей рабочих сечений патрубков приемного устройства и для отвода материала. Установлено, что при увеличении удельной нагрузки по рушанке от 3,3 до 22,8 кг/(смч) потери давления изменялись от 93 до 220 Па.
  4. Исследован процесс отделения лузги из пяти фракций рушанки семян подсолнечника воздушным потоком в усовершенствованном аэросепараторе при q=3,3–22,1 кг/(смч), U=2,5–4,8 м/с и =30–40°. Установлено сложное и стесненное движение частичек лузги в вертикальном воздушном потоке, что связано с соударением частиц между собой и со стенками канала, их вращением, неравномерностью воздушного потока и т.д. Определены рациональные режимы процесса для каждой фракции рушанки, обеспечивающие допустимый вынос ядра в лузгу от 0,1 до 0,3 % и содержание свободной лузги в ядровой фракции от 4,7 до 9,8 %.
  5. Разработана математическая модель движения частичек рушанки в усовершенствованном аэросепараторе с учетом их начальной скорости, позволяющая рассчитать скорость и путь при стесненном движении в приемном устройстве и вертикальном пневмосепарирующем канале.
  6. Моделированием установлена рациональная ширина вертикального пневмосепарирующего канала для разделения соответствующих фракций рушанки, получаемых после рассева семеновеечной машины. Для фракций рушанки I и II разделов ширина канала 115 мм, для III раздела – 140 мм, для IV и V разделов – 180 мм.
  7. Разработана методика инженерного расчета аэросепаратора для разделения рушанки, в основу которой положена полученная математическая модель сложного движения частичек рушанки.
  8. Разработанные технические решения (патенты РФ №2397027, №78794 и №88020) использованы при совершенствовании семеновеечной машины, что позволяет исключить образование фракции перевея и участок контроля лузги. В связи с этим из схемы РВЦ высвобождаются четыре семеновеечных машины Р1-МС-2Т (для РВЦ МЭЗ производительностью 500 тонн в сутки по семенам подсолнечника) и обеспечивается снижение удельных энергозатрат до 13,5 %.
  9. Расчетный экономический эффект от внедрения пневмосепараторов для разделения рушанки в РВЦ МЭЗа производительностью 500 т/сут по семенам подсолнечника составил 440 тыс. руб. в год только за счет снижения выноса ядра в лузгу, не менее чем на 0,1 %.

Основные положения диссертации опубликованы

в следующих работах:

Статьи в журналах, рекомендованных ВАК

  1. Деревенко В.В., Глущенко Г.А. Особенности движения частиц рушанки по полочкам в аспирационной камере // Изв. вузов. Пищевая технология. – 2008. – №4. – С. 116 – 117.
  2. Деревенко В.В., Глущенко Г.А. Динамика движения подсолнечной рушанки в приемной камере пневмосепаратора // Изв. вузов. Пищевая технология. – 2009. – №2-3. – С. 122 – 123.
  3. Замедленное движение частичек масличного материала в однонаправленном потоке воздуха в пневмосепараторе / В.В. Деревенко [и другие] // Изв. вузов. Пищевая технология. – 2010. – № 1. – С. 67– 68.
  4. Деревенко В.В., Глущенко Г.А., Ткаченко Ю.Ю. Некоторые аэродинамические характеристики семян современных сортов подсолнечника и их плодовой оболочки // Изв. вузов. Пищевая технология. – 2010. – № 2-3. – С. 116 – 117.
  5. Деревенко В.В., Глущенко Г.А. Скорость витания ядра и лузги семян подсолнечника // Изв. вузов. Пищевая технология. – 2011. – № 1. – С. 89–90.

Патенты

  1. Пат. на изобретение 2397027 РФ, МПК C 11 B 1/02. Пневмосепаратор для отделения аэроуносимых частиц / Деревенко В.В., Глущенко Г.А.; заявитель и патентообладатель ГОУ ВПО "КубГТУ" – 2009121606/03; заявл. 05.06.2009; опубл. 20.08.2010. – 5 с.
  2. Пат. на ПМ 78794 РФ, МПК C 11 B 1/02. Пневмосепаратор /Деревенко В.В., Глущенко Г.А.; заявитель и патентообладатель ГОУ ВПО "КубГТУ" -  № 2008115564/22; заявл. 21.04.2008; опубл. 10.12.2008. – 3 с.
  3. Пат. на ПМ 88020 РФ, МПК C 11 B 1/02. Аэросепаратор для отделения лузги /Деревенко В.В., Глущенко Г.А.; заявитель и патентообладатель  ООО «Экотехпром» - 2009110425/22; заявл. 23.03.2009; опубл. 27.10.2009. – 3 с.

Статьи и доклады на международных конференциях

  1. Деревенко В.В., Глущенко Г.А. Интеграция теоретических и практических проблем при разработке ресурсосберегающих процессов и оборудования для производства растительных масел // Научно-практический журнал «Олiйно-жировий комплекс». (Украина) – 2008. – №4. – С. 64 – 67.
  2. Деревенко В.В., Глущенко Г.А. Усовершенствованная схема рушально-веечного отделения // Масла и жиры. – 2008. – №5. – С. 30 – 31.
  3. Деревенко В.В., Глущенко Г.А. Потери масла с лузгой при переработке семян подсолнечника // Масложировая индустрия 2009: материалы 9-й международной конференции. – СПб, 2009. – С. 12 – 14.
  4. Глущенко Г.А., Щербаков П.И. Пневмосепаратор для отделения лузги семян подсолнечника // Пищевые технологии и биотехнологии: тез. докл. X международной конференции молодых ученных. – Казань, 2009. – С. 169.
  5. Деревенко В.В., Глущенко Г.А., Тищенко А.Г. Повышение эффективности работы рушально-веечного отделения при переработке семян подсолнечника // Масла и жиры. – 2010. – №1–2. – С. 20 – 21.
  6. Деревенко В.В., Глущенко Г.А. Научно-техническое обоснование разработки высокоэффективного оборудования для разделения подсолнечной рушанки // Масложировая индустрия 2011: материалы 11-й международной конференции. - СПб, 2011. – С. 37 – 39.
  7. Глущенко Г.А., Ткаченко Ю.Ю., Вьюркова А.А. Определение потерь давления аэросепаратора // Интеллектуальный потенциал молодежи XXI века в инновационном развитии современного общества: материалы V Международной научно-практической конференции молодых ученых и студентов. – Усть-Каменогорск, 2012. – С. 274 – 276.
  8. Деревенко В.В., Глущенко Г.А. Пути снижения потерь масла с лузгой при переработке семян подсолнечника // Масложировой комплекс России: Новые аспекты развития: материалы VII международной конференции. – М., 2012. –  С. 51 – 55.
  1. Глущенко Г.А., Деревенко В.В., Ткаченко Ю.Ю. Основные закономерности сепарирования руш анки семян подсолнечника в аэросепараторе // Технологии и оборудование химической, биотехнологической и пищевой промышленности: материалы 5-й всероссийской научно-практической конференции студентов, аспирантов и молодых ученых с международным участием. – Бийск, 2012. – С.166 – 169.

Условные обозначения

– угол наклона приемного устройства; – угол трения; m – масса частицы, кг; g – ускорение свободного падения, м/с2; KП – коэффициент парусности, м-1; – начальная скорость движения частицы по наклонной поверхности, м/с; U0, U – скорость воздушного потока соответственно в приемном устройстве (зона 1) и в вертикальном пневмосепарирующем канале (зона 2, 3), м/с; , , – соответственно время движения частиц лузги в зонах 1, 2 и 3, с.

Подписано в печать 27.09.2012. Печать трафаретная.

Формат 60x84 1/16. Усл. печ. л. 1,35. Тираж 100 экз. Заказ № 718.

Отпечатано в ООО «Издательский Дом-Юг»

350072, г. Краснодар, ул. Московская 2, корп. «В», оф. В-120, тел. 8-918-41-50-571

e-mail: olfomenko@yandex.ru Сайт: http://id-yug.narod2.ru




© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.