WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!


На правах рукописи

Меленев Петр Викторович

МОДЕЛИРОВАНИЕ МЕТОДОМ МОНТЕ-КАРЛО СУПЕРПАРАМАГНИТНОЙ КИНЕТИКИ НАНОЧАСТИЦ

Специальность 05.13.18 — Математическое моделирование, численные методы и комплексы программ

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Пермь — 2012

Работа выполнена в ФГБУН «Институт механики сплошных сред Уральского отделения Российской академии наук» (г. Пермь).

Научный консультант: доктор физико-математических наук, зав. Лабораторией анизотропных жидкостей ФГБУН «Институт механики сплошных сред Уральского отделения РАН» профессор Райхер Юрий Львович

Официальные оппоненты: доктор физико-математических наук, профессор Кафедры Механики композиционных материалов и конструкций ФГБОУ ВПО «Пермский национальный исследовательский политехнический университет» Вильдеман Валерий Эрвинович доктор физико-математических наук, зав. Кафедрой математической физики ФГАОУ ВПО «Уральский федеральный университет имени первого Президента России Б.Н.Ельцина», профессор Иванов Алексей Олегович

Ведущая организация: ФГБОУ ВПО «Пермский государственный национальный исследовательский университет»

Защита состоится 17 апреля 2012 года в 1200 на заседании диссертационного совета Д 212.188.08 при ФГБОУ ВПО «Пермский национальный исследовательский политехнический университет» по адресу: 614990, г. Пермь, пр. Комсомольский, 29, ауд. 423 б.

С диссертацией можно ознакомиться в научной библиотеке ФГБОУ ВПО «Пермский национальный исследовательский политехнический университет».

Автореферат разослан 14 марта 2012 года.

Ученый секретарь диссертационного совета, доктор физико-математических наук Л.Н. Кротов

Общая характеристика работы

Актуальность темы. Ансамбли однодоменных магнитных наночастиц, распределенных в жидкой среде, известны в литературе, как магнитные жидкости (МЖ) или феррожидкости. Эти системы привлекают постоянной интерес исследователей, обусловленный многообразными и зачастую уникальными особенностями физико–механического поведения этих материалов. Образцы МЖ с низкими концентрациями магнитного наполнителя ( 10 об.%) и/или наблюдаемые при относительно высоких температурах (но ниже точки Кюри материала наночастиц) демонстрируют магнитный отклик, схожий к парамагнитным, но характеризуемый гораздо более высокими значениями магнитной восприимчивости и намагниченности насыщения.

Такой тип магнитного поведения называют «суперпарамагнитным». Сильное влияние поля на магнитное состояние частиц приводит к изменениям механических характеристик МЖ (вязкость, модуль сдвига и т.п.). Эти свойства служат основой для использования дисперсий малых магнитных частиц и их ансамблей в широком круге приложений: задач магнитной записи, разработки демпферов с обратной связью, создания «умных» фильтровальных материалах и катализаторов, развитие различных биомедицинских приложений (например, для усиления контраста в магниторезонансной диагностике, управляемого транспорта малых доз лекарств, гипертермии раковых клеток).

За последние шесть десятилетий в экспериментальных исследованиях суперпарамагнетиков был достигнут значительный прогресс. Однако теоретическое осмысление полученных результатов требует решения большого числа интересных и сложных задач. Так, поведение многих реальных систем определяется не только внешними факторами (механическими, тепловыми и др.), но и существенно зависит от межчастичных эффектов, в частности, диполь-дипольного взаимодействия между магнитными моментами частиц.

Последнее, являясь дальнодействующим и анизотропным, значительно затрудняет применение к многочастичным ансамблям как аналитических подходов, так и численных методов, среди которых, наиболее часто используется численное интегрирование стохастических (типа Ланжевена) либо кинетических (типа Фоккера-Планка) уравнений. В этой ситуации многообещающую альтернативу численному интегрированию эволюционных уравнений представляет применение стохастических методов группы Монте-Карло, доказавших свою эффективность в теоретических исследованиях разнообразных систем с большим числом степеней свободы. Первоначально метод Монте-Карло (МК) был разработан для описания систем в основном (равновесном) состоянии. В этом случае результаты расчета не дают никакой информации о продолжительности релаксационного процесса, приводящего к равновесию.

Между тем имеется ряд примеров, указывающих на то, что число шагов n метода МК, требуемых для достижения равновесного состояния при моделировании, имитирует (по крайней мере качественно) физическое время релаксации. Таким образом проверка данной гипотезы представляет большой интерес с точки зрения развития методов теоретического исследования неравновесного состояния суперпарамагнитных систем.

Цель работы состоит в подтверждении возможности моделирования магнитодинамики ансамблей однодоменных частиц при помощи метода Монте–Карло с алгоритмом существенной выборки Метролиса. Конкретно, речь идет о разработке способа выражения расчетной шкалы метода МКМетрополиса в единицах физического времени при моделировании процессов в ансамблях однодоменных частиц с одноосной магнитной анизотропией для постоянных либо непрерывно изменяющихся внешних условий.

Научная новизна работы заключается в следующем:

• Исследована пространственно–ориентационная конфигурация, которую принимает в основном состоянии ансамбль однодоменных магнитных частиц, размещенных в виде сферического монослоя. Получена зависимость магнитного тороидного момента ансамбля от числа частиц. Эта характеристика интересна с точки зрения использования слабых магнитных полей для управления подобными микрокомпозитами.

• Разработан метод оценки интервала времени, соответствующего одному МК-шагу при моделировании свободной релаксации магнитных моментов частиц. В отличие от известной из литературы формулы Новака и др., предложенная в настоящей работе оценка применима для описания ансамблей частиц с произвольной энергией анизотропии и в МКрасчетах с немалыми амплитудами угловой вариации момента частицы.

• Разработана универсальная процедура оценки продолжительности МКшага при моделировании намагничивания ансамбля однодоменных частиц с одноосной магнитной анизотропией в произвольно направленном внешнем поле. Предложенная методика позволяет рассматривать широкий круг систем: с заданным распределением направлений легких осей частиц, полидисперсностью их размеров, ансамблей частиц, связанных диполь-дипольным взаимодействием и др.

• Впервые были воспроизведены методом Монте–Карло результаты численного решения уравнения Брауна для задачи с непрерывно изменяющимися внешними условиями: динамического магнитного гистерезиса (ДМГ) ансамбля невзаимодействующих однодоменных частиц. Обнаружена прямая пропорциональность числа МК-шагов и физическим временем процесса. Получена оценка для интервала времени, соответствующего одному МК-шагу при моделировании ДМГ в широких диапазонах изменения частоты поля и температуры.

Основные положения, выносимые на защиту:

• Метод определения основного магнитного состояния ансамбля однодоменных магнитных частиц, равномерно размещенных на поверхности немагнитной сферы, включающий в себя способ получения пространственной конфигурации системы такого типа.

• Выражение для интервала времени, соответствующего единичному МКшагу произвольной амплитуды в расчетах свободной магнитной релаксации однодоменной частицы с произвольной величиной константы анизотропии.

• Процедура оценки продолжительности МК-шага в случае моделирования релаксации намагниченности ансамбля однодоменных частиц в присутствии постоянного внешнего поля произвольного направления. Модификация указанной процедуры, позволяющая рассматривать ансамбли с полидисперсностью размеров частиц и/или с различными ориентационными распределениями их легких осей.

• Способ описания при помощи метода Монте–Карло динамического магнитного гистерезиса однодоменных частиц, а также соответствующее этому способу выражение для продолжительности расчетного шага.

Практическая значимость. Моделирование магнитодинамики ансамблей однодоменных частиц важно для теоретической интерпретации экспериментальных данных, полученных для реальных суперпарамагнитных систем, применяемых в различных приложениях. Стохастические методы типа Монте–Карло могут служить мощным средством решения неравновесных задач для суперпарамагнитных систем и позволяют сравнительно легко учитывать практически важные факторы (полидисперсность размеров наночастиц, их магнитное взаимодействие и т.п.), а также рассматривать процессы большой продолжительности. Это выгодно отличает МК-моделирование от подходов, традиционно применяемых при рассмотрении магнитодинамических задач: аналитического либо численного решения соответствующих уравнений — динамических (Ландау–Лифшица–Гильберта) либо кинетических (типа Фоккера–Планка). Представленные в работе результаты моделирования динамического магнитного гистерезиса подтверждают применимость метода МК-Метрополиса для описания не только релаксационных магнитных процессов, но и задач с непрерывно изменяющимися внешними условиями. Кроме того, предложенные выражения для оценки продолжительности МК-шага, позволяют связать результаты стохастического моделирования, получаемые в искусственной расчетной шкале, с масштабом физического времени процесса. Тем самым появляется возможность использовать метод МК-Метрополис не только для качественного, но и количественного анализа неравновесных магнитных явлений в суперпарамагнетиках.

Диссертационная работа была выполнена при поддержке Российского фонда фундаментальных исследований (проекты № 06–02–81047–Бел_а и № 08–02–00802–а, совместный с Национальным центром научных исследований Франции проект № 09–02–91070–НЦНИ_а).

Личный вклад автора. Постановка задачи, а также анализ результатов моделирования и их сопоставление с экспериментальными и теоретическими данными проводился автором совместно с научным руководителем и соавторами. Формулировка математической модели, разработка и реализация расчетных процедур, а также интерпретация полученных данных с точки зрения использования стохастических методов для решения неравновесных задач осуществлялись соискателем самостоятельно.

Достоверность результатов подтверждается удовлетворительным соответствием данных расчетов, проведенных с использованием разработанной реализация метода МК-Метрополиса, с известным аналитическим решением задачи о равновесном намагничивании ансамбля невзаимодействующих магнитоизотропных однодоменных частиц, а также расчетами равновесных значений намагниченности системы частиц с одноосной магнитной анизотропией.

Апробация работы. По материалам диссертации были сделаны доклады на следующих научных конференциях: XX Международная школасеминар «Новые магнитные материалы микроэлектроники — НМММ-20» (Москва, 2006), IX Всероссийский съезд по теоретической и прикладной механике (Нижний Новгород, 2006), XIV Всероссийская конференция «Структура и динамика молекулярных систем» (Яльчик, 2007), Всероссийская научная конференция «Физико-химические и прикладные проблемы магнитных дисперсных наносистем» (Ставрополь, 2007), Moscow International Symposium on Magnetism (Москва, 2008 и 2011), XVI и XVII Зимние школы по механике сплошных сред (Пермь, 2009 и 2011), XXI Международная конференция «Новое в магнетизме и магнитных материалах — НМММ-21» (Москва, 2009), XII International Conference on Magnetic Fluids (Сендай: Япония, 2010).

Работа была полностью доложена и обсуждена на следующих научных семинарах: Лаборатории PECSA Университета им. Пьера и Марии Кюри (Париж: Франция; руководитель: профессор П. Левитц), Института механики сплошных сред УрО РАН (руководитель: академик РАН, д.т.н. профессор В.П. Матвеенко), по физике твердого тела Института физики микроструктур РАН (Нижний Новгород; руководитель: член-кор. РАН, д.ф.-м.н. профессор А.А. Андронов), кафедры «Механики композиционных материалов и конструкций» ПНИПУ (руководитель: д.ф.-м.н. профессор Ю.В. Соколкин), кафедры «Математического моделирования систем и процессов» ПНИПУ (руководитель: д.ф.-м.н. профессор П.В. Трусов).

Публикации. По теме диссертации опубликовано 15 научных работ, в том числе 6 статей [1–6 ], из которых 3 [3–5 ] представлены в журналах, рекомендованных ВАК для публикации результатов диссертационных исследований, и 9 тезисов докладов конференций.

Структура и объем диссертации. Работа состоит из введения, четырех глав, заключения и списка цитируемой литературы из 91 наименования. Полный объем диссертации составляет 136 страниц, включая 35 рисунков и 2 таблицы.

Cодержание работы

Введение содержит обоснование актуальности выбранной темы, описание основных целей диссертационного исследования и общую характеристику работы.

Глава 1 состоит из двух разделов. Раздел 1.1 содержит общий обзор суперпарамагнитных систем. Приводятся определения броуновского и неелевского механизмов релаксации намагниченности ансамбля малых частиц, а также понятия температуры блокировки. На их основе объясняется эффект динамического магнитного гистерезиса (ДМГ) суперпарамагнитного ансамбля, проявляющийся в наличии петли на кривой намагничивания системы в сильном переменном поле.

В разделе 1.2 анализируются известные автору диссертации подходы по привязке результатов Монте-Карло расчетов к физическому времени моделируемого процесса:

• кинетический Монте–Карло (КМК);

• аналитическая оценка Новака, Чантрелла и Кеннеди для интервала времени, соответствующего одному шагу МК-Метрополиса;

• подход Ли, Окабе и др., основанный на аналитическом решении мастеруравнения метода Монте-Карло.

В разделе описываются особенности каждого из методов, их сильные и слабые стороны.

Глава 2 включает в себя три раздела. В разделе 2.1 приводится общая постановка рассматриваемой в работе задачи моделирования магнитного поведения ансамбля однодоменных частиц с одноосной анизотропией магнитных свойств, помещенных во внешнее однородное поле. В разделе дается описание используемой в работе реализации метода Монте-Карло и алгоритма Метрополиса и обсуждаются критерии остановки расчета, применяемые в различных неравновесных задачах, рассматриваемых в работе.

В начале раздела 2.2 описывается несколько вариантов экспериментально синтезированных микрокомпозитов, в частности, объекты со сферическими сердечниками субмикронных размеров и наполнением из ферромагнитных нанозерен. Для моделирования некоторых важных разновидностей подобных систем необходимо, во-первых, определить равномерное размещение центров частиц на поверхности немагнитной твердой сферы, и во-вторых, найти ориентационное распределение их магнитных моментов в основном состоянии в отсутствии внешнего поля. В работе пространственная конфигурация системы определялась из решения задачи Томсона об оптимальном размещении на сфере одинаковых точечных электрических зарядов1. Моделирование магнитной организации ансамбля показало, что без приложенного поля рассматриваемые системы имеют практически нулевую среднюю намагниченность, но при этом характеризуются заметным магнитным тороидным моментом. Данное обстоятельство может оказаться полезным в приложениях, где используются слабые неоднородные внешние поля (например, генерируемые линейными электрическими токами). В расчетах использовался алгоритм вынужденной глобальной оптимизации (constrained global optimization — CGO) — модификация метода МК-Метрополиса, предназначенная для поиска глобального минимума энергии системы2.

Thomson J.J. // Philos.Mag. Ser.6. — 1904. — Vol. 7. — P. 237–269.

Altschuler E.L. et al. // Phys.Rev.Letters. — 1994. — Vol. 72. — P. 2671–2674.

В разделе 2.3 проводится верификация используемой численной процедуры на примере задачи моделирования квази-статических кривых намагничивания ансамбля невзаимодействующих частиц. Результаты МК-расчетов согласуются с известными аналитическими зависимостями для систем с произвольной энергией анизотропии.

Глава 3 посвящена результатам использования метода МКМетрополиса для описания релаксации намагниченности ансамблей однодоменных частиц с одноосной магнитной анизотропией в постоянном магнитном поле либо в его отсутствии.

Раздел 3.1 главы содержит общее описание процедуры моделирования процесса релаксации магнитного момента частицы методом Монте-Карло.

Раздел 3.2 посвящен аналитическому описанию процессов, рассматриваемых в данной главе. Представлена модель Нееля свободной релаксации магнитного момента однодоменной частицы с одноосной магнитной анизотропией в приближении высокого (по сравнению с kBT ) потенциального барьера между минимуми энергии. В этом случае зависимость намагниченности системы от времени следует одноэкспоненциальному закону: M(t) = Ms exp (-t/N), где время релаксации связано с энергией анизотропии простым соотношением: N = exp ( = KvVp/kBT – безразмерный параметр анизотропии частицы). Описывается подход Брауна3 к описанию эволюции магнитного состояния частицы в общем случае, базирующийся на использовании кинетического уравнения типа Фоккера-Планка для плотности вероятности направления момента частицы, записанного на основе динамического уравнения Ландау–Лифшица–Гильберта (ЛЛГ).

Одним из препятствий на пути использования метода Монте-Карло для решения задач динамики намагничивания суперпарамагнитных систем служит отсутствие ясной связи результатов МК-моделирования с масштабом физического времени процесса. Для решения этой задачи Новак и др. предложили4 аналитическую оценку интервала времени t, соответствующего единичному шагу метода Монте–Карло, производимому с амплитудой R. При выводе этого выражения (описанном в разделе 3.3) используется приближение малого изменения энергии системы на шаге. Это условие выполняется, строго говоря, только в случае малых амплитуд угловой вариации момента и/или небольших энергий анизотропии частицы.

В работе предложен вариант оценки интервала t, соответствующего единичному МК-шагу при моделировании магнитной релаксации Brown W.F. // Phys.Rev. — 1963. — Vol. 130. — P. 1677–1686.

Nowak U., Chantrell R.W., Kennedy E.C. // Phys.Rev.Letters. — 2000. — Vol. 84. — P. 163–166.

системы невзаимодействующих однодоменных частиц, основанный на непосредственном сопоставлении расчетной зависимости намагниченности системы от n (числа произведенных МК-шагов) с аналогичной временной характеристикой M(t), полученной аналитически либо с использованием подтвержденных численных методик. Раздел 3.4 содержит описание предлагаемого подхода к моделированию свободной релаксации частицы. Расчеты показали, что в этом случае функция M(n) следует тому же простому экспоненциаль- Рис. 1: Зависимость проекции намагниченности системы на направление анизотроному закону, что и в модели Нееля:

пии Mz от номера МК-шага n. Графики 1– M(n) = M0 exp (-n/n), где n пред4 соответствуют значениям = 0, 2, 5, 10.

ставляет собой численный аналог времени релаксации (см. Рис.1). Таким образом, число МК-шагов, необходимое для достижения определенного уровня намагниченности, линейно пропорционально соответствующему промежутку времени, отсчитываемому с момента начала процесса. Следовательно, изменения состояния системы за один расчетный шаг оказываются эквивалентными происходящим за неизменный на протяжении расчета интервал физического времени t, величину которого можно определить простым отношением t =, n где для определения использовалось аппроксимационное выражение, предложенное Коффи и др.5, справедливое для произвольных значений . Далее в разделе исследуется зависимость характерного числа шагов n (а тем самым и t) от параметров задачи. Оказалось, что при каждом заданном значении параметра анизотропии величина n практически пропорциональна R-2.

В физически важном случае 1 использованное для времени релаксации выражение Коффи и др. имеет простую форму exp(). Это дает возможность предложить для t следующую аппроксимацию:

tfr R2 A() exp ((1 - a) ), Coffey W.T. et al. // J. Magnetism and Magnetic Materials. — 1994. — Vol. 131. — P. L301–L303.

где числовой коэффициент a 0.85, а функция A() отлична от константы только при < 3.

В разделе 3.5 рассмотрен процесс намагничивания системы постоянным однородным полем произвольного направления. В этой ситуации простое аналитическое описание процесса релаксации намагниченности ансамбля отсутствует: зависимость M(t) и величина могут быть определены в общем случае только численно. При этом нет оснований изначально предполагать сохранение линейной пропорциональности между числом МК-шагов и физическим временем процесса, наблюдаемой в случае свободной релаксации магнитного момента однодоменной частицы. Поэтому для оценки продолжительности МК-шага, которая теперь может меняться на протяжении расчета, необходимо напрямую сопоставлять результаты стохастического моделирования (функцию Mz(n)) и зависимость Mz(t), определенную посредством численного интегрирования кинетического уравнения Брауна:

t tmag() =, {t, n} : Mz(t) = Mz(n), (1) n где Mz — проекция намагниченности ансамбля на направление внешнего поля. На практике выяснилось, что после начальной стадии быстрого изменения Mz, величина tmag() слабо варьируется при дальнейшем росте . Это дает возможность в последующих расчетах рассматривать ее усреднение по большим n: tmag. В работе исследована зависимость tmag от направления и величины приложенного поля. Обнаружено, что в широких диапазонах этих параметров вариация уссредненной продолжительности МК-шага ограничена (остается в пределах 5 10 %). Далее, в подразделе 3.5.2 рассматривается случай произвольного распределения направлений осей анизотропии, а в подразделе 3.5.3 — случай систем, состоящих из полидисперсных частиц.

Глава 4 работы посвящена результатам применения метода МКМетрополиса для моделирования процесса с непрерывно изменяющимися внешними условиями (в рассмотренных ранее задачах описания релаксации намагниченности и температура, и внешнее поле оставались постоянными) на примере динамического магнитного гистерезиса в системах однодоменных частиц.

В разделе 4.1 проводится краткий обзор теоретических работ, посвященных ДМГ. В частности, отмечается, что исторически первая модель явления была предложена Стонером и Вольфартом6 в бестемпературном приближении на основе энергетического подхода. Полное же описание ДМГ, учитывающее действие тепловых флуктуаций и позволяющее рассматривать поле Stoner E.C., Wohlfarth E.P. // Philos.Trans.Roy.Soc. A. — 1948. — Vol. 240. — P. 599–642.

произвольной амплитуды и частоты, возможно лишь на основе решения уравнения типа Фоккера–Планка (в данной задаче — это упоминавшееся ранее уравнение Брауна).

В модели, описываемой в разделе 4.2, рассматривается магнитный отклик системы невзаимодействующих однодоменных частиц с одноосной магнитной анизотропией на переменное линейно-поляризованное внешнее поле с амплитудой порядка поля анизотропии частицы. В расчетах протокол изменения поля дискретизируется последовательностью из m этапов, продолжительностью n МКшагов каждый. В течение этапа поле остается постоянным, а при переходе на новый — меняется ступенчато.

Результаты моделирования, Рис. 2: Петля ДМГ для различных парапредставленные в разделе 4.3, показыметров дискретизации протокола изменевают, что МК-расчеты согласуются с ния поля.

данными точного численного стационарного решения кинетического уравнения Брауна7. Кроме того, выяснилось, что 1. общее число МК-шагов ntot = m n, необходимое для воспроизведения заданной петли ДМГ, определяется частотой поля в рассматриваемом случае. Более того из сравнения результатов расчетов циклов для различных частот следует, что ntot 1/. Иными словами наблюдается прямая аналогия между физическим временем процесса и числом шагов Монте-Карло, производимых для его моделирования.

2. При сохранении ntot результаты МК-расчетов — форма петли — практически не зависят от конкретного способа разбиения цикла изменения поля (см. Рис.2), то есть выбора значений m и n при условии, что на каждом этапе будет производиться не меньше 10 12 МК-шагов.

3. Сохраняется обнаруженная при моделировании релаксационных процессов квази–диффузионная связь между числом МК-шагов и амплитудой вариации с которой они производятся: ntot R-2.

Poperechny I.S., Raikher Yu.L., Stepanov V.I. // Phys.Rev.B. — 2010. — Vol. 82. — P. 174423(1–14).

Описанные закономерности позволили воспроизвести при помощи метода МК-Метрополиса кинетические результаты для широких диапазонов частоты поля: 10-3 0 1 (здесь 0 — время затухания ларморовской прецессии магнитного момента частицы) и энергии анизотропии частицы: 2 15.

Обнаруженная пропорциональность между числом МК-шагов и периодом поля дала возможность оценить продолжительность одного расчетного шага при моделировании ДМГ:

2 tDMH =.

ntot · Анализ результатов показал, что при 3 и 0 < 1, то есть при невысоких температурах и частотах, продолжительность МК-шага хорошо аппроксимируется простой зависимостью:

tDMH R2 exp (q ), где числовой коэффициент q 0.1.

Разработанная процедура моделирования была применена для более реалистичных постановок задачи: полидисперсного ансамбля и системы взаимодействующих частиц. Первому случаю посвящен подраздел 4.3.2, где рассматривался ансамбль, в котором распределение частиц по размерам подчиняется лог-нормальному закону, хорошо описывающему типичные нанопорошки. Обнаружено, что при низких температурах высокочастотные петли ДМГ для полидисперсных систем оказываются уже монодисперных аналогов, в то время, как при высоких температурах разброс размеров частиц в ансамбле приводит к увеличению площади петли ДМГ во всем рассматриваемом диапазоне частот поля.

При моделировании систем, частицы в которых связаны дипольдипольным магнитным взаимодействием существенную роль играет распределение центров масс частиц в пространстве. В представляемой работе был рассмотрен сферический монослой частиц, размещенных без соприкосновения. Реальным прототипом такой системы являются микрокомпозиты, в которых нанозерна ферритов осаждаются на поверхность немагнитных (кварцевых, полистирольных и др) сферических сердечников. Предполагалось два возможных типа распределения частиц в слое: случайное и квази–регулярное.

Последнее определялось из решения задачи Томсона. Расчеты показали, что петли ДМГ для монослоя со случайным размещением частиц гораздо сильнее отличаются от результатов ансамбля таких же, но невзаимодействующих частиц, чем данные моделирования системы с упорядоченным распределением зерен. В частности, наблюдается значительный рост поля раскрытия петли, что можно объяснить наличием близко расположенных частиц в ансамблях со случайным размещением. По материалам моделирования ансамблей изолированных пар либо линейных триплетов частиц анализируется влияние подобных малых кластеров на форму петли.

Для систем с упорядоченным размещением частиц сравниваются данные расчетов сферического квази-регулярного слоя нанозерен и элемента кубической решетки, заполненного такими же частицами. Результаты для объемно заполненного образца сильнее отличаются от петли ансамбля без взаимодействия, чем данные для монослоя, несмотря на то, что и сферический упорядоченный монослой, и элемент кубической решетки имеют близкие оценки характерной энергии межчастичного диполь–дипольного взаимодействия. Это подтверждает важность характера размещения частиц в реальных системах при их теоретическом описании.

В завершающем главу подразделе 4.3.3 представлены результаты применения разработанного подхода для описания ДМГ реального суперпарамагнитного ансамбля:

частиц феррита кобальта (CoFe2O4) со средним раз- Mz / Ms мером 12 нм, внедренных 0.в полиуретановую матрицу8.

Образцы помещались в низкочастотное поле (с периодом 6440 с); измерения проведе-0.ны в диапазоне температур T = 213 313 K. Модели-рование показало, что учет -3 -2 -1 0 1 2 h = / 2 диполь–дипольного взаимодействия в предположении о Рис. 3: Кривая циклического намагничивания дисслучайном объемном размеперсии наночастиц CoFe2O4 в ПУ матрице при T = щении центров масс частиц 223 K: эксперимент (сплошная кривая), МК-расчет позволяет значительно улучдля модели без взаимодействия (штрихи) и с его учешить согласие результатов том (кресты).

расчета с экспериментальными данными, см. Рис. 3.

Заключение содержит основные результаты, достигнутые в ходе выполнения диссертационного исследования, и выводы, сделанные на их основе.

Frickel N., Gottlieb M., Schmidt A.M. // Polymer. — 2011. — Vol. 52, No. 8. — P. 1781–1787.

Основные результаты • Разработан комплекс программ, основанный на методе Монте-КарлоМетрополиса и предназначенный для моделирования эволюции магнитного состояния ансамбля однодоменных частиц при постоянных либо непрерывно меняющихся внешних условиях. Созданное программное обеспечение может быть эффективно использовано на параллельных вычислительных машинах.

• На основе вычислительного эксперимента определено основное (в отсутствии внешнего поля) магнитное состояния монослоя, образованного магнитными наночастицами, равномерно распределенными по поверхности немагнитной микросферы. Получена зависимость тороидного магнитного момента системы от числа частиц.

• Для задач моделирования релаксации намагниченности ансамбля невзаимодействующих однодоменных магнитных частиц в произвольно направленном постоянном внешнем поле разработаны процедуры оценки интервала времени, соответствующего одному шагу Монте-Карло. Указанные оценки пригодны для описания широкого класса систем, в том числе — в расчетах с большими амплитудами угловой вариации магнитного момента частицы.

• Показано согласие результатов МК-моделирования динамического магнитного гистерезиса с данными точного численного решения уравнения Брауна в широких диапазонах величины энергии анизотропии частиц и частоты приложенного поля. Предложено выражение для оценки продолжительности МК-шага при моделировании динамического магнитного гистерезиса.

• Разработанная методика позволяет простым образом учесть в процедуре расчета дополнительные факторы, такие как полидисперсность ансамбля либо взаимодействие между его частицами, что продемонстрировано на примере моделирования динамического магнитного гистерезиса реальных систем, содержащих дисперсии наночастиц ферритов.

Публикации автора по теме диссертации 1. Меленев П.В., Русаков В.В., Райхер Ю.Л. Намагниченность ферровезикулы: простая модель. // Сборник трудов XX международной школысеминара «Новые магнитные материалы микроэлектроники» / Моск.

гос. ун-т. Физический фак. — Москва, 2006. — С. 307–308.

2. Меленев П.В., Русаков В.В., Райхер Ю.Л. Магнитная структура ансамбля однодоменных частиц на сфере. // Сборник трудов Всероссийской научной конференции «Физико-химические и прикладные проблемы магнитных дисперсных наносистем» — Ставрополь, 2007. — С. 334–339.

3. Меленев П.В., Русаков В.В., Райхер Ю.Л. Магнитная структура сферического кластера однодоменных частиц. // Письма в Журнал технической физики. — 2008. — Том 34. № 6. — С. 50–56. (из перечня ВАК) 4. Melenev P.V., Rusakov V.V., Raikher Yu.L., Perzynski R. Ground magnetic state of an assembly of single-domain particles confirmed in a spherical layer.

// Journal of Magnetism and Magnetic Materials. — 2009. — Vol. 321.

No 7. — P. 663–666. (из перечня ВАК) 5. Меленев П.В., Русаков В.В., Райхер Ю.Л., Пержински Р. Моделирование неелевской релаксации однодоменной частицы методом МонтеКарло. // Известия РАН. Серия физическая. — 2010. — Том 74. № 10. — С. 1500–1502. (из перечня ВАК) 6. Melenev P.V., Perzynski R., Raikher Yu.L., Rusakov V.V. Monte Carlo model for the dynamic magnetization of microspheres. // Physics Procedia.

— 2010. — Vol. 9: 12th International Conference on Magnetic Fluids. — P. 54–57.

Подписано в печать 12.03.2012 г. Формат 60 x 84/16.

Усл. печ. л. 0.93. Тираж 100 экз. Заказ 79.

Типография Пермского государственного национального исследовательского университета.

614990, г. Пермь, ул. Букирева, 15.







© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.