WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук

На правах рукописи

МЕДВЕДЕВ РУСЛАН НИКОЛАЕВИЧ

ЭЛЕКТРОГИДРОДИНАМИЧЕСКИЕ АВТОКОЛЕБАТЕЛЬНЫЕ ПРОЦЕССЫ НА КОНЦЕНТРАТОРАХ ТОКА В ЭЛЕКТРОЛИТЕ

01.02.05 – Механика жидкости, газа и плазмы

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Новосибирск – 2012

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте гидродинамики им. М.А. Лаврентьева Сибирского Отделения Российской Академии Наук, г. Новосибирск.

Научный консультант: кандидат физико-математических наук, старший научный сотрудник Тесленко Вячеслав Степанович

Официальные оппоненты: доктор физико-математических наук, профессор Климкин Виктор Федорович доктор физико-математических наук, доцент Куперштох Александр Леонидович

Ведущая организация: Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С.

Кутателадзе Сибирского Отделения Российской Академии Наук

Защита состоится 04 сентября 2012г. в __ часов на заседании диссертационного совета Д003.054.01 по присуждению ученой степени кандидата наук в конференц-зале ИГиЛ СО РАН по адресу: 630090, г. Новосибирск, проспект Академика Лаврентьева, 15.

С диссертацией можно ознакомиться в библиотеке ИГиЛ СО РАН.

Ваш отзыв в двух экземплярах, заверенный печатью, просим направлять по адресу: 630090, Новосибирск, пр. Лаврентьева, 15, ИГиЛ СО РАН, ученому секретарю совета.

Автореферат разослан «__» ______ 2012г.

Ученый секретарь диссертационного совета д. ф.-м. н. Ждан С.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Электрические разряды и плазменные образования в проводящих средах на сегодняшний день имеют широкое применение в науке и промышленности для обработки поверхностей, получения наночастиц, обеззараживания жидкости, инициирования хим. реакций, генерации акустических волн и т.д.

Одним из режимов низковольтных (до 1кВ) разрядов в проводящих жидкостях является автоколебательный режим. Он характеризуется импульсным током при постоянном приложенном напряжении, что обеспечивается образованием и пульсацией пузырьков на концентраторах тока.

Период автоколебаний и область их существования – одни из самых важных параметров, которые играют первостепенную роль для конструирования прикладных установок. На сегодняшний день не существует даже приближенных теоретических формул, описывающих зависимости периодов автоколебаний от параметров, таких как размер концентратора тока, прикладываемое напряжение, свойства электролита и т.д. Эмпирически полученные зависимости учитывают изменение только одного параметра, например, напряжения, температуры или размера концентратора и при варьировании остальных могут существенно меняться.

В связи с этим существует необходимость комплексных исследований (экспериментальных и теоретических) электрогидродинамического автоколебательного процесса с привлечением законов электродинамики, гидродинамики и теплофизики для нахождения зависимости периода автоколебаний от параметров системы.

Обнаруженный нами эффект самосинхронизации автоколебаний на множественных концентраторах тока [4] позволяет синхронизировать пульсации пузырьков при параллельном включении в цепь большого числа (N~10103) концентраторов тока, что является важным результатом для задач генерации акустических волн заданного профиля и частоты. Данный эффект позволяет эффективно генерировать плазму в пузырьках саморегулирующимся образом в заданных областях пространства, это позволяет локализовать процессы плазменной обработки и инициирования хим. реакций.

Значительное количество работ показывает прикладную ценность низковольтных разрядов в электролитах на концентраторах тока в целом, и в автоколебательных режимах, в частности [1*]. В связи с этим необходимо комплексно исследовать автоколебательные процессы в электролите с привлечением теоретических аппаратов.

Цель работы.

1. Исследовать физику происходящих автоколебательных процессов. Найти область существования автоколебательных режимов и зависимость периода автоколебаний от размеров концентраторов и прикладываемого напряжения.

2. Построить математическую модель автоколебательного процесса на одиночном диафрагменном концентраторе тока.

3. Выявить механизм синхронизации автоколебаний на множественных концентраторах тока.

4. Проверить наличие автоколебательных режимов для протяженных концентраторов тока.

Научная новизна работы.

1. Найдена приближенная аналитическая зависимость периода автоколебания на диафрагменном круглом концентраторе тока от напряжения, проводимости, размера концентратора тока, которая согласуется с результатами поставленных экспериментов.

2. Полученная экспериментально и теоретически зависимость периода автоколебаний от напряжения имеет минимум.

Минимальный период пропорционален размеру концентратора тока.

3. Выявлен механизм синхронизации автоколебаний на множественных концентраторах тока.

4. Обнаружено существование автоколебательного режима при электрическом низковольтном разряде на линейных и кольцевых концентраторах тока.

Практическая ценность работы. Результаты выполненной работы являются важными, так как на основе полученных закономерностей и обнаруженных эффектов самосинхронизации автоколебаний на множественных концентраторах тока позволяют рассчитывать параметры генераторов акустических волн заданной частоты и профиля.

На основе полученных результатов были разработаны и опробованы опытные установки по обеззараживанию жидкости электрическим разрядом в автоколебательном режиме, эмиссионному спектральному анализу проводящей жидкости, инициированию горючих газов в импульсном режиме непосредственно в жидком теплоносителе.

Основные положения, выносимые на защиту:

1. Результаты экспериментального и теоретического изучения динамики образования, роста и схлопывания пузырька на одиночном круглом концентраторе тока.

2. Результаты экспериментального исследования автоколебаний на множественных концентраторах тока.

3. Экспериментальное обнаружение автоколебательных режимов на линейных и кольцевых концентраторах тока.

Апробация основных результатов. Результаты научных исследований были представлены на следующих российских и международных конференциях: Современные проблемы электрофизики и электрогидродинамики жидкостей (Санкт-Петербург, 2006г.), Pulsed Power Symposium (UK, Oxfordshire, 2007г.), Всероссийская Научная Конференция Студентов–Физиков (Ростов-на-Дону, 2007г.), Лаврентьевские чтения (Новосибирск, 2007г., 2010г.), Физика импульсных pазpядов в конденсированных средах (Украина, Николаев, 2007г., 2011г.), Физика окружающей среды (Томск, 2007г.), Ist international conference on biological and environmental sciences (Egypt, Hurghada, 2008г.), Fourth International Symposium on Non-equilibrium processes, Plasma, Combustion, and Atmospheric Phenomena (Сочи, 2009г.).

По тематике данной работы сделаны доклады на семинарах: в Институте теплофизики (председатель чл.-корр. РАН Алексеенко С.В.), Институте гидродинамики (председатель академик Титов В.М.), Институте теоретической и прикладной механики (председатель академик Фомин В.М.), Институте гидродинамики СО РАН (председатель чл.-корр. Пухначев В.В.).

Публикации. Всего опубликовано 18 печатных работ, в том числе 15 по теме диссертации, из них: 6 научных статей в ведущих изданиях, входящих в перечень, рекомендуемый ВАК РФ, 9 докладов в трудах всероссийских и зарубежных научных конференций.

Личный вклад автора. Автором лично были проведены эксперименты с круглыми и кольцевыми диафрагменными концентраторами тока, проведен анализ полученных экспериментальных результатов. Экспериментальные данные по автоколебаниям на металлических концентраторах тока принадлежат Тесленко В.С., Дрожжину А.П., Зайковскому А.В.

Постановка задачи расчета теплового роста тороидального пузырька на диафрагме была выполнена совместно с Черновым А.А. (ИТФ СО РАН), численный расчет удельной мощности при протекании тока через диафрагму – совместно с Карповым Д.И. (ИГиЛ СО РАН). Остальные расчеты и сравнение результатов с экспериментальными данными автором выполнены самостоятельно.

При апробации метода обеззараживания жидкости анализ концентрации живых клеток в растворе был выполнен с помощью Белякина С.Н. (ИЦиГ СО РАН). Автор принимал участие в экспериментах по инициированию горючей смеси в жидкости и провел анализ зависимости интенсивности свечения от подключаемой индуктивности в экспериментах по спектральным исследованиям автоколебательного процесса.

Объем и структура работы. Диссертация состоит из введения, четырех глав, заключения и списка литературы. Диссертация изложена на 128 страницах основного текста, включая 57 рисунков, 1 таблицу, 79 формул и список литературы из 97 источников.

Основное содержание работы

Во введении обосновывается актуальность темы работы, приводятся основные цели работы, научная новизна и положения, выносимые на защиту.

Глава 1 посвящена экспериментальному и теоретическому изучению электрогидродинамических автоколебаний на одиночном концентраторе тока при постоянном подаваемом напряжении. Результаты данной главы изложены в работах автора [1-3].

В п. 1.1 приведено общее описание явления автоколебаний и проведен анализ научных результатов, полученных другими авторами в данной области.

В п. 1.2 описана экспериментальная установка по изучению автоколебательных процессов на диафрагменных (рис. 1а) и металлических (рис. 1б) концентраторах тока. Электроды 1, 2 располагались в диэлектрической кювете 4 с электролитом по разные стороны от диафрагмы с отверстиями 3. В качестве электродов применялись пластины из нержавеющей стали. Для измерения тока использовался осциллограф 6 (Tektronix TDS-210), который подключался к шунту R = 0,2 Ом. Второй вход осциллографа подключался к электродам 1, 2 через делитель для регистрации напряжения.

Киносъемка гидродинамических процессов проводилась при помощи скоростной видеокамеры 7 (REDLAKE HG-LE) через окно из оргстекла 5 в кювете и круглое отверстие в электроде 2. Электрическая схема установки состояла из конденсатора С = 10 100 мкФ, который заряжался до напряжения UC = 10 1000 В от внешнего источника постоянного напряжения Uпит., электромагнитного ключа К, управляемого от внешнего запускающего генератора, от которого также запускалась киносъемка и осциллографирование.

Собственная индуктивность установки составляла 3мкГн.

В качестве электролита использовались 1 5 % растворы NaCl в дистиллированной воде. Диафрагмой служили пленки из тефлона толщиной мкм и лавсана толщиной 50 и 100 мкм. Диаметр d отверстия в пленке варьировался от 0,05 до 1,5 мм.

а б Рис. 1. Схема экспериментальной установки для изучения автоколебаний на одиночном концентраторе тока: а) – диафрагменного типа, б) – металлического типа.

Полярность металлических концентраторов тока была преимущественно положительной, в качестве противоположного электрода использовали металлическую пластину площадью, во много раз превышающей площадь концентратора.

В п. 1.3 представлены экспериментально определенные область существования автоколебательного режима и зависимость периода автоколебаний от напряжения (рис. 2). Впервые обнаружено, что зависимость периода от напряжения имеет немонотонный характер с минимумом в окрестности 200 В. При этом минимальный период пропорционален диаметру концентратора тока.

Экспериментально показано, что для диафрагменных и металлических концентраторов тока, образуемый в начальной стадии пузырек в обоих случаях имеет торообразную форму с осью на кромке концентратора тока.

В. п. 1.4 при помощи Рис. 2. Зависимость периода автоколебаний от численного расчета распределения напряжения для различных диаметров круглых удельной мощности в диафрагм. Концентрация NaCl – 3%.

электролитической ячейке с круглым концентратором тока показано, что при отсутствии пузырька максимальная удельная мощность локализована на кромке концентратора тока, а в случае с тороидальным пузырьком – на внутренней стенке пузырька, обращенной к оси концентратора тока. Также выполнен численный расчет полной мощности, выделяемой в электролитической ячейке, при различной толщине диафрагмы и радиусе пузырька.

В. п. 1.5 выполнен расчет сопротивления электролита по результатам предыдущего параграфа. Показано, что средняя температура, до которой нагревается электролит, слабо зависит от концентрации и размеров отверстия и составляет около 40°С.

В п. 1.6 выполнен численный расчет поля температур при нагреве электрическим током и времени нагрева до образования пузырька с использованием экспериментальных данных п. 1.2. Показано, что максимальная точка поля температур расположена на кромке концентратора тока, а зависимость максимальной температуры от времени согласуется с результатами [2*].

В п. 1.7 показано, что эффективность преобразования электрической выделяемой энергии в энергию пузырька не зависит от размера концентратора тока и находится на уровне 5%, при этом экспериментальные значения составляют от 1% до 10%.

В п. 1.8 представлены результаты численно определенной кинетической энергии жидкости при расширении тороидального пузырька. Сравнение с аналитической формулой кинетической энергии в приближении тонкого кольца (малый радиус тора много меньше большого), полученной в [3*] показало, что аналитическая формула может быть применена для любых малых радиусов тора вплоть до замыкания в центре с точностью не хуже 12%.

Выполнен приближенный расчет зависимости периода адиабатических пульсаций тороидального пузырька от его максимального размера.

В п. 1.9 выполнен численный расчет динамики теплового роста тороидального пузырька на диафрагменном концентраторе тока. Решалась система уравнений:

T 1 T 2T q r + ( T ) -, r + = t C r r z2 C dm = - TdS, (1) dt m pV = ATS, µ & p - pa 8a R&& & = ln *[RR + R2]-, R где первое уравнение – нестационарной теплопроводности с учетом вынужденной конвекции при расширении пузырька, второе уравнение – поток энергии в пузырек за счет испарения (Фурье), третье – уравнение состояния пара в пузырьке, четвертое – уравнение пульсации тороидального пузырька [3*]. Поле скоростей жидкости подставлялось в уравнение теплопроводности из результатов п. 1.8. Удельная мощность q бралась из результатов расчета п.

1.4.

В уравнениях (1) использовались обозначения: , С, , , TS, – теплопроводность, теплоемкость, плотность, удельная теплота парообразования, температура кипения жидкости, µ – молярная масса пара, m – масса пара в пузырьке, pa – давление в жидкости (атмосферное), p – давление газа в пузырьке, а – радиус отверстия, R – радиус пузырька, S=42aR – площадь поверхности пузырька, V=22aR2 – объем пузырька, А – универсальная газовая постоянная.

При решении системы (1) пренебрегали зависимостью температуры кипения от давления, так как давление при росте пузырька не превышает атмосфер, что соответствует росту температуры на 20%.

В качестве начальных условий использовали зародышевый тороидальный пузырек при атмосферном давлении и комнатной температуре с радиусом, много меньшим радиуса отверстия в диафрагме.

После приведения системы (1) к безразмерному виду в ней остается три C2a2 pa ~ безразмерных параметра, содержащих все физические величины: pa =, ~ ~ CATSTS = TS 2, k =. При решении системы (1) принималось, что k=const, а U µpa параметры pa и ТS варьировались в соответствии с задаваемым радиусом отверстия а, проводимостью электролита и напряжением U.

В результате численного решения системы (1) получено, что рост пузырька начинается при температуре на кромке отверстия 120 130 С (теплопроводность диафрагмы принималась равной нулю), что соответствует равенству интенсивности кипения и конденсации на стенке пузырька.

При более низких температурах процесс конденсации преобладает, что приводит к быстрому схлопыванию пузырька после его образования. Таким образом, в Рис. 3. Зависимость безразмерного радиуса R=R/a ~ начале своего роста пузырек пузырька от безразмерного времени t = t.

Caсовершает несколько микропульсаций со схлопыванием к начальному зародышу, после которых его рост продолжается (рис. 3). Такой эффект проявляется в экспериментах, как образование и схлопывание множества отдельных круглых пузырьков на кромке концентратора тока, которые затем объединяются и растут, как единый торообразный пузырь.

Также в экспериментах были обнаружены пульсации пузырька уже непосредственно перед полным перекрыванием концентратора тока, что получено теоретически (рис. 3).

После полного перекрывания концентратора нагрев жидкости током прекращается, пузырек быстро принимает форму сферы и далее растет и схлопывается сферически. Мы считали, что пульсация пузырька после перекрывания концентратора происходит адиабатически и использовали уравнение Релея со сшивкой скорости границы пузырька и его радиуса в конце теплового роста до перекрывания концентратора с началом адиабатического роста после перекрывания. Учет испарения и конденсации на этапе после перекрывания дает поправку ко времени пульсации не более 10%.

Результаты численного решения системы (1) позволили получить приближенное аппроксимирующее выражение для периода пульсации пузырька:

CTSa2 a + 3,7a + 4,6U, (2) U pa CTS pa pa где U – напряжение на электродах, – проводимость электролита. Как видно, он имеет минимум при:

CTSa pa Umin 0,77, (3) а минимальный период определяется выражением:

min 9a. (4) pa На рис. 4 показаны экспериментальные зависимости первого периода автоколебаний от напряжения (точки) в сравнении с формулой (2) (сплошные линии). Первый период выбирался из условий равенства начальной температуры комнатной и отсутствия пузырьков в жидкости. При а = 0,05 мм погрешность составляет около 20%, при а = 0,75 мм – около 50%. Формула (4) согласуется с экспериментально определенным коэффициентом пропорциональности с точностью 13%.

Таким образом, полученное соотношение (2) позволяет Рис. 4. Зависимость экспериментально полученного первого периода автоколебаний от приближенно вычислять период напряжения: 1) а = 0,025 мм, = 3,6 Ом-1м-1, 2) а = автоколебаний на круглом 0,05 мм, = 6 Ом-1м-1, 3) а = 0,1 мм, = 6 Ом-1м-1, диафрагменном концентраторе тока в 4) а = 0,25 мм, = 3,6 Ом-1м-1. Сплошные линии – аппроксимация формулой (2).

зависимости от параметров устройства и свойств электролита во всем диапазоне существования автоколебательных режимов.

Глава 2 посвящена изучению эффекта самосинхронизации автоколебаний на множественных концентраторах тока, подключенных параллельно (рис. 5). Результаты данной главы изложены в работах автора [49].

В. п. 2.1 дается описание автоколебательных процессов при подключении нескольких концентраторов параллельно.

В. п. 2.2 приводится постановка экспериментов по изучению эффекта самосинхронизации автоколебаний при подключении в разрядную цепь катушки индуктивности (рис. 5).

Установка аналогична изображенной на рис. 1а с той разницей, что в качестве концентраторов тока в данном случае используются несколько отверстий или металлических электродов, Рис. 5. Экспериментальная установка для изучения эффекта самосинхронизации автоколебаний на подключенных параллельно, и в множественных концентраторах тока.

разрядной цепи присутствует катушка индуктивности L = 0 43 мГн. Для исключения гидродинамической связи проводились дополнительные эксперименты с концентраторами, расположенными в разных кюветах.

В.п. 2.3 описывается механизм самосинхронизации автоколебаний на двух диафрагменных концентраторах тока с одинаковыми (d1 = 0,25 мм, d2 = 0,26 мм) и различными (d1 = 0,45 мм, d2 = 0,25 мм) диаметрами отверстий в диафрагме.

Экспериментально показано, что в момент перекрывания пузырьками концентраторов наименьших размеров создается избыточное индуктивное напряжение, которое ведет к ускорению роста пузырьков на остальных не перекрытых концентраторах. При увеличении разницы в размерах концентраторов необходимая для обеспечения синхронизации индуктивность увеличивается, при этом выделяемой до перекрывания концентраторов энергии может быть недостаточно для выравнивания размеров пузырьков, и дополнительный ввод энергии происходит уже после перекрывания за счет пробоя пузырьков и нагрева плазмой (рис. 6).

В. п. 2.4 приведены экспериментальные результаты по изучению автоколебаний на большом числе (до 56) концентраторов тока. Введен параметр синхронизации:

Imax - Imin KS =, (5) Imax где Imax, Imin – максимальное и минимальное значения тока в одном цикле, определяемые по осциллограммам тока, усреднение берется по всем импульсам тока.

Рис. 6. Кинограмма роста пузырьков, соответствующие осциллограммы тока (a), напряжения на электродах (b), выделяемой мощности (c) и график движения границы пузырька (d) для автоколебаний на диафрагменных концентраторах тока (d1 = 0,45 мм, d2 = 0,25 мм). L = 30 мГн, UC = 200 В.

Исследование зависимости параметра синхронизации от подключаемой индуктивности при разных количествах отверстий позволяет сделать вывод о пороговом характере процесса самосинхронизации при увеличении индуктивности.

Глава 3 посвящена изучению возможности получения автоколебательных режимов на протяженных концентраторах тока – линейных и кольцевых. Результаты данной главы изложены в работах автора [10-13].

В п. 3.1 описаны три основные постановки экспериментов:

a) линейный металлический концентратор тока (1), залитый эпоксидной смолой (2), с длиной l = 9,5 мм и шириной полосок h = 0,17 0,9 мм (рис. 7а), б) кольцевой металлический концентратор Рис. 7. Схемы постановки экспериментов: a) – линейный тока (1), залитый эпоксидной металлический концентратор тока (1), залитый в эпоксидную смолу (2), б) – металлический кольцевой концентратор тока (1), смолой (2), с диаметрами залитый в эпоксидную смолу (2), в) – диафрагменный положительного электрода D концентратор тока в виде кольца в лавсановой пленке.

= 3 10 мм, с шириной кольца (1) h = 0,17 0,9 мм (рис. 7б), в) кольцевой диафрагменный концентратор тока (1), D = 6 8 мм, h = 0,мм (рис. 7в).

Электрическая схема установки аналогична приведенной на рис. 5.

В. п. 3.2 представлены результаты экспериментов по получению автоколебаний на линейных и кольцевых концентраторах тока, а в п. 3.проведен анализ полученных результатов. Показано, что на линейных концентраторах полное прерывание тока обеспечивается только при достаточной индуктивности в разрядной цепи (L > 7,7 мГн), в то время как на кольцевых концентраторах полное прерывание тока (полное перекрывание концентратора пузырьком) осуществляется и без подключения индуктивности в цепь. Это объясняется процессами коалесценции пузырьков, которые в случае кольца позволяют получать более симметричный по сечению пузырь. Наличие индуктивности позволяет в еще большей степени выравнивать сечение пузырька по периметру концентратора за счет пробоев в перетяжках [12].

Экспериментально показано, что значения периодов автоколебаний для круглых, линейных и кольцевых концентраторов (при условии d=h) совпадают, в пределах экспериментального разброса измеряемых параметров, более того, зависимость периода от напряжения для протяженных концентраторов также имеет минимум, что говорит об одинаковых механизмах образования и роста пузырьков для круглых и протяженных концентраторов.

Глава 4 посвящена апробации перспективных приложений автоколебательного режима. Результаты данной главы изложены в работах автора [7, 14-15].

В п. 4.1 описаны эксперименты по обеззараживанию биологического раствора кишечной палочки (E. coli). Экспериментальная установка аналогична представленной на рис. 5, поток жидкости через отверстия обеспечивался созданием разности давлений. В результате проведенных экспериментов показано, что при обработке протекающей жидкости диафрагменным разрядом в режиме автоколебаний концентрация живых клеток в растворе уменьшается до 104 раз по сравнению с прогонкой раствора без подачи напряжения. Таким образом, продемонстрирована принципиальная возможность обеззараживания жидкости при помощи диафрагменных разрядов.

В. п. 4.2 исследован спектральный состав излучения из зоны концентраторов при синхронном автоколебательном режиме на множественных концентраторах тока (рис. 5). Из результатов экспериментов следует, что излучение содержит атомарные спектры растворенных в воде веществ, это показывает возможность определения состава жидкости при помощи синхронного автоколебательного режима. Экспериментально найдена зависимость интенсивности свечения от подключаемой индуктивности, которая показывает, что при увеличении индуктивности интенсивность излучения возрастает.

В п. 4.3 на примере разработки метода инициирования ацетиленкислородных пузырьков в воде при помощи электрического разряда показана возможность импульсного сжигания газообразных топлив непосредственно в жидком теплоносителе, что позволит повысить КПД ТЭС.

В Заключении изложены основные результаты и выводы диссертационной работы:

1. Впервые на основе экспериментальных исследований построена теоретическая модель теплового роста торообразного пузырька на круглом диафрагменном концентраторе тока. Теоретически рассчитаны приближенные зависимости периода пульсаций пузырька для диафрагменного концентратора тока от напряжения, размера отверстия, проводимости на всем диапазоне существования автоколебательного режима (формула (2)). Расчет подтвердил экспериментально полученную немонотонную зависимость периода от напряжения и пропорциональность минимального периода радиусу отверстия с коэффициентом 0,9 с/м (формула (4)). Выражение (2) с точностью 20 50 % описывает экспериментальные данные для отверстий, радиусами а = 0,025 0,75 мм при проводимости электролита = 1,3 6 Ом-1м-1.

2. Впервые обнаружен и исследован процесс самосинхронизации автоколебаний на множественных концентраторах тока при подключении в разрядную цепь катушки индуктивности, который заключается в том, что индуктивность позволяет выделять дополнительную энергию в пузырьках селективно на стадии их роста, что выравнивает пузырьки по размеру.

3. Впервые исследованы автоколебательные режимы для линейных и кольцевых концентраторов тока. Построены зависимости периодов пульсаций от напряжения и ширины концентраторов данного типа, которые показали, что механизмы роста пузырьков на круглых, линейных и кольцевых концентраторах схожи.

Разработанные теоретические модели и полученные зависимости позволяют рассчитывать параметры систем при проектировании прикладных устройств, таких как генераторы акустических волн заданной геометрии, установок для обеззараживания жидкости, инициирования физ.-хим. реакций.

Список цитированной литературы:

1*. Лазаренко Б.Р., Фурсов С.П., Факторович А.А., Галанина Е.К., Дураджи В.Н. Коммутация тока на границе металл-электролит. АН Молдавской ССР. Кишинев, 1971. 73 с.

2*. Поппель П.С., Павлов П.А., Скрипов В.П. Экспериментальное определение температуры достижимого перегрева электролитов // Гидродинамика и теплообмен. УНЦ АН СССР. 1974. С. 86–91.

3*. Кедринский В.К. О пульсации тороидального газового пузыря в жидкости // Динамика сплошной среды: Сб. науч. тр. / АН СССР. Сиб.

отд-ние. Инт. Гидродинамики. 1974. Вып. 16. С. 35–43.

Основные результаты диссертации опубликованы в работах:

1. Тесленко В.С., Медведев Р.Н., Дрожжин А.П., Санкин Г.Н. Механизм автоколебательных процессов на диафрагменных концентраторах тока. // Сборник трудов 8-й международной конференции "Современные проблемы электрофизики и электрогидродинамики жидкостей", СанктПетербург. 2006. С. 139–142.

2. Тесленко В.С., Медведев Р.Н., Дрожжин А.П.

Электрогидродинамический автоколебательный эффект на множественных концентраторах тока // III Международный научный конгресс "ГЕО-Сибирь-2007". Новосибирск. 2007. Т. 4. Ч. 2. С. 178–183.

3. V.S.Teslenko, R.N. Medvedev, A. P. Drozhzhin, G.N. Sankin. Mecanism of autooscillation processes on diaphragm current concentrators // Proceedings of the conference «Modern problems of electrophysics and electrohydrodynamics of liquids». Saint-Petersburg. 2006. Pp.139–143.

4. Тесленко В.С., Медведев Р.Н., Дрожжин А.П. Самосинхронизация электрогидродинамических автоколебаний при многоочаговых разрядах в электролите // Письма в Журнал технической физики. 2007. Т. 33. Вып.

19. С. 55–63.

5. Medvedev R., Teslenko V., Drozhzhin A. Electrohydrodynamic selfsynchronization of self-oscillations on two diaphragm current concentrators in electrolyte // Physics Letters A. 2008. Vol. 373. Pp. 102–106.

6. Р.Н. Медведев, В.С. Тесленко, А.П. Дрожжин. Механизмы самосинхронизации электрогидродинамических автоколебаний при многоочаговых разрядах в электролите // Материалы XIII Международной научной школы-семинара "Физика импульсных разрядов в конденсированных средах". Институт импульсных процессов и технологий НАН Украины. 2007. С. 32–34.

7. Medvedev R.N., Lomanovich K.A., Teslenko V.S.. The regime of synchronous multichannel electrohydrodynamic autooscillations for emission spectroscopy // Fourth International Symposium on Non-equilibrium Processes, Plasma, Combustion, and Atmospheric Phenomena. 2009. Pp. 64– 68.

8. V.S. Teslenko, G.N. Sankin, A.P. Drozhzhin, R.N. Medvedev. Role of cooperativity in sonoluminescence problem investigations // Proceedings of the 5th World Congress on Ultrasonics WCU 2003. Paris. 2003. Pp. 967–969.

9. Medvedev R.N., Teslenko V.S. Cumulation of energy by multispark diaphragm autooscillation process in electrolyte // 20th IET Symposium on “Pulsed Power 2007”. Oxfordshire, UK. 2007. Pp. 139–141.

10. Teslenko V.S., Medvedev R.N., Zaykovskiy A.V. The influence of coronalike discharges on processes of stabilization of electrohydrodynamic autooscillations in water electrolytes // Fourth International Symposium on Non-equilibrium Processes, Plasma, Combustion, and Atmospheric Phenomena. Sochi. 2009. Pp. 162–168.

11. Тесленко В.С., Медведев Р.Н., Зайковский А.В. Автоколебательные явления в электролите на кольцевых концентраторах тока // Динамика сплошной среды. 2010. Вып. 126. С. 146–155.

12. Тесленко В.С., Медведев Р.Н. Электрогидродинамические автоколебания в электролите на линейных и кольцевых концентраторах тока // Письма в журнал технической физики. 2011. Т. 37, Вып. 10. С. 56–63.

13. Тесленко В.С., Ростовцев В.И., Ломанович К.А., Дрожжин А.П., Медведев Р.Н. Электровзрывная дезинтеграция медно-никелевых руд с одновременной сепарацией частиц по крупности // Физико-технические проблемы разработки полезных ископаемых. 2007. №1. С. 100–107.

14. В.С. Тесленко, В.И. Манжалей, Р.Н. Медведев, А.П. Дрожжин. Сжигание углеводородных топлив непосредственно в водном теплоносителе // Физика горения и взрыва. 2010. Т. 46. № 4. С. 132–135.

15. В.С.Тесленко, В.И. Манжалей, Р.Н. Медведев, А.П. Дрожжин. О возможности сжигания углеводородных топлив непосредственно в теплоносителе // Сборник трудов конференции «Современные проблемы термодинамики и теплофизики». Новосибирск. 2009. С. 198–199.






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.