WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 || 3 |

= - [(0 + )u]- [(0 + )w]- U t x z x u u U0 u w u w U0 - A1 1 p = -u - - - - A2u t x x z z 0 + x w w U0 w w w A1 1 p = -u - - - - A3 - A2 w (1) t x x z 0 + z 0 + T T T (T0 + T )u w 2T 2T = -u - U0 - w - A4 + + A5 + t x x z x z x2 z p = (0T + T0 + T ) m Здесь, первое уравнение – это уравнение неразрывности, второе и третье – уравнения Навье-Стокса, четвертое – уравнение сохранения энергии, и, наконец, последнее – это уравнение состояния идеального газа, – плотность, T – температура, p – давление, U0 – x компонента скорости зонального ветра, m0 – относительная молекулярная масса воздуха. Индексами «0» и «» обозначены невозмущенные и возмущенные части термодинамических параметров, соответственно. Здесь u и w горизонтальные и вертикальные компоненты скорости движения частиц атмосферы, соответственно, A1-5 – постоянные. Для таких относительно быстрых движений несущественна сила Кориолиса, которая не учитывалась. В данной модели сила вязкости вводится как Рэлеевское трение r r Fd = -, а = - коэффициент трения, который растет с высотой. При затухании энергии таких больших волновых движений основную роль играет теплопроводность, т.е. в уравнении для температуры диссипативный член равен Qd = kT, где k – коэффициент теплопроводности воздуха. Как видно из (1), в слагаемом, относящемся к теплопроводности отсутствует производная второго порядка от фоновой температуры по высоте. Это связано тем, что в случае, если возмущение в атмосфере отсутствует, т.е. все переменные равны нулю, тогда в 2Tрешении уравнений будут генерироваться волны из-за того, что 0. А это с zфизической точки зрения недопустимо. При моделировании использовались профили фоновой плотности и температуры атмосферы из модели MSISE-90.

Значения скорости зонального ветра были взяты из модели HWM-93. Таким образом, после задания параметров атмосферы и соответствующих начальных и граничных условий можно решать систему уравнений (1).

Второй параграф посвящен разработке численного алгоритма для решения (1). При выборе численного метода мы учитывали следующие особенности данной задачи:

• Решение должно содержать медленные и быстрые волновые движения.

• Метод должен быть устойчивым к резким градиентам плотности атмосферы.

• Обеспечение устойчивости решения усложняется присутствием нелинейных компонент в уравнениях.

• Большой объем вычислений из-за размера области интегрирования и длительности времени распространения волн.

Учитывая все вышеперечисленное, после анализа и сопоставления разных методов был выбран явный конечно-разностный метод Flux Corrected Transport [15]. В разработанном нами численном алгоритме используются основные свойства этого метода. Суть метода состоит в том, что для обеспечения устойчивости решения на первом этапе вводится искусcтвенная диффузия, а потом с помощью антидиффузии минимизируется численная диффузия. Так как все переменные в (1) могут быть положительными и отрицательными, мы не использовали ограничения на антидиффузионные слагаемые для обеспечения положительности. Таким образом, мы освобождаемся от таких проблем, как синхронизация потоков и большие затраты на время расчета. Для обеспечения устойчивости и высокой точности мы аппроксимировали конвективные, адвекционные и нелинейные слагаемые в (1) особыми методами [15]. Для решения двумерной и трехмерной задачи использовался метод расщепления шага по времени для координатных направлений. Граничные условия состоят из двух частей: первая часть обеспечивает вход возмущения от источника в данную модель, вторая часть - уход волны из расчетной области. Начальные условия предполагались нулевыми.

В третьем параграфе приведен вывод формулы для вычисления изменения электронной концентрации в плоскопараллельной ионосфере, вследствие столкновений с нейтральными частицами во время прохождения АГВ. Эта формула получена из уравнении неразрывности для заряженных частиц [3]:

t dNe t u u w w 2 2 Ne (x, z,t) = - (bxbzu + bz w)d - Ne x + bxbz + + bz d (2) b x z x z dz t0 tгде Ne- концентрация электронов в невозмущенной ионосфере, bx и bz горизонтальные и вертикальные компоненты единичного вектора магнитного поля, соответственно. В конкретных расчетах использовался профиль фоновой ионосферы, состоящий из двух параболических слоев - E и F (с максимумом на км). Для наблюдения за состоянием ионосферы имеет очень большое значение определение изменения полного электронного содержания (ПЭС) в разных направлениях, т.е. между приемником и искуственным спутником земли (ИСЗ) [4] (см. Рис. 1):

satellite TEC = Nedr (3) receiver В третьей главе рассматривается включение наземных источников в представленную модель, анализ полученных результатов для нейтральной атмосферы и ионосферы и сравнение их с экспериментальными данными. Глава разделена на 5 параграфов.

В первом параграфе приведена постановка задачи для моделирования литосферно-ионосферной связи. Наземный импульсный источник рассматривался как поршнеобразный источник, который действует на атмосферу (участок AB на Рис. 1). Чтобы включить этот источник в данную модель, необходимо задать скорость движения частиц воздуха на высоте поверхности земли в окрестности эпицентра источника. Отсюда следует, что для вертикальной компоненты (горизонтальные перемещения не учитываются) скорости граничное условие будет условием сшивания над твердой поверхностью земли:

2(t - t0) exp- - xc x, t0 t t0 + P w = wm sin (4) P Dx где wm – амплитуда, t0 – момент начала возмущения, P – период, xc – горизонтальная координата эпицентра источника, Dx – Гауссовский масштаб, характеризующий горизонтальный размер источника. Для сильного землетрясения или подземного ядерного испытания мы брали wm= 10 м/с, P= 1 c, Dx = 20 км. При выборе значений этих параметров, мы учитывали то обстоятельство, что на практике определить точные значения параметров импульса возмущения не так просто, и они зависят от конкретного случая. Но так как нашей главной целью является изучение общих свойств возмущений от таких источников, мы принимали некоторые приближенные значения параметров источника. Что касается наземных промышленных взрывов, то их можно учитывать в нашей модели с помощью задания эквивалентного подземного источника.

Во втором параграфе представлены основные результаты, полученные при решении уравнений (1) для наземного источника с вышеперечисленными параметрами. Таким образом, система уравнений (1) вместе с начальными и граничными условиями решалась с помощью составленного нами пакета компьютерных программ. Параметры расчетной сетки были выбраны следующие:

шаг по высоте 5 км, по горизонтальной координате 10 км и 0.1 сек по времени.

Размеры моделируемой области составляли 4000 км и 500 км по ширине и высоте, соответственно.

Как известно, стратификация температуры и зональный ветер влияют на распространение АГВ в атмосфере. Чтобы отделить эти влияния друг от друга, мы поэтапно рассматривали разные варианты модели атмосферы в наших вычислениях. Изотермический случай интересен тем, что он позволяет сравнить результаты моделирования с предшествующими работами в этой области. Как показывает сравнение, период, фазовая и групповая скорости, линейный рост периода ВГВ и т.д. полученные нами для изотермической и безветренной атмосферы, подтверждаются результатами предыдущих работ. Кроме того, как показывают результаты, данная модель хорошо описывает такие нелинейные эффекты, как укручение профиля волны и т.д. Таким образом, тестирование численной модели показало, что она обладает приемлемой точностью.

На Рис.2 представлена зависимость горизонтальной скорости гидродинамических частиц на высоте h=100 км, от времени и расстояния. Она рассчитана на основе июльского профиля температуры модели MSISE-90, без учета ветра для вышесказанного источника. Здесь четко видны АВ и ВГВ. Как видно из графика, период ВГВ растет от 300 сек до 1200 сек линейно по мере удаления от источника в горизонтальном направлении. Эта связано тем, что волны с большими периодами движутся наклонно к вертикали. Период акустических волн около сек. Точка насыщения, т.е. высота максимальной амплитуды АГВ находиться на высоте около 200 км. Вертикальная скорость, возмущения плотности, давления и температуры в волне, также показывают подобную зависимость. Для АВ вертикальная скорость, а для ВГВ горизонтальная скорость играют доминирующую роль.

В третьем параграфе приведены результаты вычислений ионосферных возмущений, вызванных наземными импульсными источниками. На Рис. 3-представлены пространственные распределения вариации электронной плотности в ионосфере через 5000 с после землетрясения или взрыва. После толчка в течении 15 мин возмущение доходит до верхней атмосферы. Учет зонального ветра нарушает симметрию отклика атмосферы и ионосферы. Этот случай продемонстрирован на Рис. 3, где ось OX направлена на восток. Здесь наблюдаются среднемасштабные ПИВ с длинами волн около 100 км, распространяющиеся от источника с горизонтальной фазовой скоростью около 300 м/с.

Проведенные исследования показали сильную качественную и количественную модификацию ионосферного отклика при изменении ориентации геомагнитного поля. Как видно из Рис. 4, в случае когда магнитное поле имеет заметную вертикальную компоненту (наклонение I=45°), получается совсем другая картина. Эти результаты могут быть также применены к интерпретации атмосферных возмущений вызванных наземными взрывами.

Что касается данных, полученных при трансионосферном зондировании верхней атмосферы сигналами спутниковой радионавигационной системы GPS, то анализ полученных результатов показывает, что характеристики этих сигналов сильно зависят от месторасположения приемника, угла места спутника и т.д. Как показывают наши результаты, диапазон частот этих возмущений может быть очень широким. Если посмотреть на Рис. 5a, мы увидим, что этот график качественно хорошо описывает высокочастотные (период 200 с) возмущения вертикального ПЭС (т.е. угол места спутника =90°), зарегистрированные авторами [4,5] во время сильных землетрясений. Этот график соответствует случаю, когда приемник находиться над эпицентром. В Рис. 5b представлена зависимость вариации вертикального ПЭС, когда приемник находиться на расстоянии 800 км от источника. Здесь видна ВГВ с периодом приблизительно 1000 с. Длиннопериодные колебания в ионосфере, предсказанные нами, наблюдались с помощью томографических, доплеровским зондированием, и др. методами во время землетрясений и взрывов [2,3,12]. Периоды волн, горизонтальные фазовые и групповые скорости распространения волн в нашей модели и экспериментальных данных почти совпадают.

В четвертом параграфе представлены результаты моделирования возбуждения атмосферы и ионосферы от длиннопериодных наземных источников.

Как известно, неглубокие землетрясения генерируют длинные поверхностные волны Релея, которые распространяются на большие расстояния. В модели в качестве источника бегущей волны Релея предполагалась одиночная синусоидальная волна с периодом 50 с и длиной волны 70 км, которая распространяется со скоростью 1400 м/с по поверхности земли. Для амплитуды скорости вертикальных колебаний земной поверхности принималось значение wm= 1 мм/с. Ионосферный отклик через 2000 с после начала распространения волны отточки О в направлении оси ОХ (см. Рис.1) продемонстрирован на Рис. 6. В этом Рис. 1. Схематическая диаграмма, иллюстрирующая, генерацию АГВ наземными и атмосферными источниками и возможности спутникового радиозондирования. Показаны зональный ветер и магнитное поле.

Рис. 2. Изменение горизонтальной скорости частиц атмосферы в зависимости от времени и горизонтального расстояния.

Рис.3. Распределение вариаций электронной концентрации в ионосфере, после наземного возмущения, где учтен ветер и горизонтальное магнитное поле.

Рис.4. Распределение вариаций электронной концентрации в ионосфере, после наземного возмущения (наклонение магнитного поля I=45°).

Рис. 5. Возмущения вертикального полного электронного содержания. а) над эпицентром; б) вдали от него; 1 TECU=1016 эл/мслучае ПИВ распространяются со сверхзвуковой фазовой скоростью. Амплитуда возмущения электронной плотности такого же порядка, как в случае импульсного источника. По периодам атмосферные волны, генерированные волнами Рэлея, принадлежат к высокочастотным АВ. Этот результат подтверждается результатами аналитических вычислений, проведенных в работе [8].

Кроме того, в природе существуют длиннопериодные источники, такие как цунами, колебания земной поверхности и т.д. [6–8]. Длиннопериодные колебания земной поверхности могут быть основным механизмом генерации ВГВ в сейсмически активных регионах. С этой целью мы брали источник в форме (4), с амплитудой 1 мм/с, но с разными периодами. Анализ отклика нейтральной атмосферы на такие источники показывает, что роль ВГВ в отклике растет с ростом периода источника. Результаты показывают, что в зависимости от расстояний в горизонтальном и вертикальном направлениях от источника, чувствительность атмосферы существенно меняется. На Рис. 7 показаны две резонансные кривые, рассчитанные на основе сравнения амплитуд скоростей над источником и на горизонтальном расстоянии 100 км от него. Очевидно, что первая кривая имеет максимум на частоте Брента-Вяйсяля. Из второй кривой видно, что максимум отклика смешается в сторону длинных периодов с удалением от источника в горизонтальном направлении. Что касается, амплитуды возмущений, то они сравнимы с откликами в случае импульсных источников, несмотря на то, что амплитуды источников отличаются в 104 раз. Таким образом, длиннопериодные наземные источники способны генерировать интенсивные ВГВ в атмосфере в больших масштабах. Если учесть, что в сейсмически активных регионах протяженность таких источников велика, тогда очевидно, что они могут сильно возбудить верхнюю атмосферу, и их можно зарегистрировать радиофизическими методами.

В пятом параграфе приведены результаты трехмерного моделирования атмосферных возмущений от импульсных источников. В трехмерном случае система уравнений (1) будет иметь аналогичный вид, но с добавлением компоненты скорости в другом горизонтальном направлении. К сожалению, большие затраты памяти компьютера и времени расчета ограничивают возможности решения трехмерной задачи и обработки полученных результатов.

Pages:     | 1 || 3 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»