WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     |
|

На правах рукописи

КОЗЛОВ АЛЕКСАНДР БОРИСОВИЧ НЕЛОКАЛЬНОСТЬ ОПТИЧЕСКОГО ОТКЛИКА АТОМАРНЫХ ГАЗОВ, ОДНОМЕРНЫХ ФОТОННЫХ КРИСТАЛЛОВ И ТОНКИХ МЕТАЛЛИЧЕСКИХ ПЛЕНОК Специальность 01.04.21 – лазерная физика

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Москва – 2004

Работа выполнена на кафедре общей физики и волновых процессов физического факультета Московского государственного университета им. М.В. Ломоносова

Научный консультант: доктор физико-математических наук, профессор Андреев Анатолий Васильевич

Официальные оппоненты: доктор физико-математических наук, профессор Акципетров Олег Андреевич доктор физико-математических наук, профессор Маймистов Андрей Иванович

Ведущая организация: Институт спектроскопии Российской Академии наук

Защита состоится « 20 » мая 2004 года в 15.00 часов на заседании диссертационного совета Д 501.001.31 в Московском государственном университете им. М.В. Ломоносова по адресу: 119992, ГСП-2, Москва, ул. Академика Хохлова, д. 1, Корпус нелинейной оптики, аудитория им. С.А. Ахманова.

С диссертацией можно ознакомиться в библиотеке физического факультета МГУ им. М.В. Ломоносова.

Автореферат разослан « 13 » апреля 2004 года.

Ученый секретарь диссертационного совета Д 501.001.31, доцент Т.М. Ильинова 2

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы.

В последние годы большой интерес вызывают исследования нелинейнооптических эффектов в изотропных средах, запрещенных свойствами симметрии среды. К таким эффектам относится, например, генерация “запрещенной” второй гармоники в атомарных газах.

Известно, что в изотропных средах генерация второй гармоники запрещена в электродипольном приближении. Генерация второй гармоники также запрещена во всех порядках мультипольного разложения, если со средой центросимметричных атомов взаимодействует плоская электромагнитная волна. Тем не менее, генерация второй гармоники в таких средах все еще возможна за счет пространственнонелокальных взаимодействий атомов среды с пространственно-неоднородным лазерным полем. Простейшим примером пространственно-неоднородного поля является суперпозиция двух плоских волн распространяющихся под углом друг к другу. Другим, совершенно естественным и часто встречающимся примером является жестко сфокусированный лазерный импульс.

О генерации второй гармоники в атомарных газах сообщалось в целом ряде работ. Для объяснения экспериментальных результатов было предложено несколько теоретических моделей. Среди недостатков этих моделей, следует отметить их стационарность во времени, а также справедливость лишь в полях умеренной интенсивности. Поэтому развитие теоретических моделей описывающих динамику пространственно-нелокальных взаимодействий атомов с сильным лазерным полем является актуальной задачей.

Пространственно-неоднородные поля естественным образом возникают в одномерных фотонных кристаллах. Исследования оптических свойств фотонных кристаллов весьма актуальны сейчас с точки зрения различных технологических приложений. Отдельный интерес представляют собой исследования нелинейнооптических процессов второго порядка в фотонных кристаллах, слои которых изготовлены из изотропных материалов. В таких материалах нелинейно-оптические процессы второго порядка запрещены в электродипольном приближении. В связи с этим, генерация второй гармоники или суммарной частоты в фотонных кристаллах с изотропными слоями оказывается возможной или вблизи границы раздела слоев, где свойства симметрии граничащих сред нарушаются, или в объеме слоев фотонного кристалла за счет пространственно-нелокальных взаимодействий атомов среды с полем.

Для описания нелокально-оптического отклика атомарных сред, необходимо учесть изменение электромагнитного поля в пределах электронных оболочек атомов.

Часто бывает достаточным учесть это изменение с точностью до первой производной по пространству от потенциалов электромагнитного поля. В сущности, такое приближение учитывает лишь первый член в разложении отклика среды по малому параметру пространственной дисперсии. Однако, существуют ситуации, когда необходимо учитывать следующие, более высокие члены разложения для отклика среды. Более того, существуют ситуации, когда отклик среды не может быть представлен в виде указанного разложения, по причине отсутствия малого параметра.

Такие ситуации возникают при рассмотрении оптического отклика наноразмерных электронных систем, например, сверхтонких металлических пленок толщиной всего в несколько атомных слоев.

Оптический отклик сверхтонких металлических пленок является существенно нелокальным и во многом определяется коллективными свойствами электронной подсистемы. Его корректное описание возможно лишь в рамках подхода, который самосогласованным образом учитывает взаимодействие электронов с электромагнитным полем индуцируемым электронной подсистемой. Развитие таких подходов является очень важным для понимания многих удивительных свойств сверхтонких металлических пленок.

Цели и задачи диссертационной работы.

1. Исследовать влияние пространственной неоднородности поля на нелинейнооптический отклик атома. Разработать самосогласованную модель описывающую динамику пространственно-нелокальных взаимодействий атома с полем.

2. Рассчитать угловые спектры излучения второй и третьей гармоник генерируемых в процессе взаимодействия изотропной среды с двумя ультракороткими лазерными импульсами распространяющимися под углом друг к другу.

3. Исследовать генерацию суммарной частоты в одномерном фотонном кристалле с изотропными слоями при неколлинеарной геометрии взаимодействия волн.

Сравнить поверхностный и объемный механизмы генерации суммарной частоты.

4. Исследовать линейно-оптические свойства сверхтонких металлических пленок в рамках самосогласованной микроскопической теории, учитывающей существенно нелокальный и коллективный характер электронного отклика.

Определить спектр частот коллективных электронных возбуждений в сверхтонких металлических пленках.

Научная новизна работы.

1. Предложена модель взаимодействия атома с излучением, которая в двухуровневом приближении описывает динамику пространственнонелокальных взаимодействий, обусловленную изменением населенности атомных уровней.

2. Выполнен сравнительный анализ поверхностного и объемного механизмов генерации волны суммарной частоты в одномерном фотонном кристалле с изотропными слоями.

3. Впервые исследован процесс возбуждения неоднородной электромагнитной волны в одномерных фотонных кристаллах в процессе четырехволнового смешения.

4. В рамках самосогласованной теории функционала плотности, рассмотрено взаимодействие сверхтонкой металлической пленки с электромагнитным полем имеющим одновременно как продольную, так и поперечную составляющие.

5. Вычислен спектр частот коллективных возбуждений в сверхтонких металлических пленках, и показано, как этот спектр трансформируется с изменением толщины пленки, включая предельный переход к однородному электронному газу.

Научная и практическая значимость работы.

1. Показано, что учет динамики населенностей атомных уровней в процессе взаимодействия изотропной среды с суперпозиционным полем двух плоских волн распространяющимися под углом друг к другу приводит к качественным изменениям угловых спектров излучения второй и третьей гармоник.

2. Показано, как с помощью неколлинеарной геометрии взаимодействия волн могут быть достигнуты оптимальные условия для генерации волны суммарной частоты в одномерном фотонном кристалле.

3. Показана возможность управления распределением поля в слоях одномерного фотонного кристалла с помощью возбуждения различных волноводных мод в процессах трех- или четырехволнового смешения.

4. Учет на микроскопическом уровне как продольной, так и поперечной составляющих электромагнитного поля взаимодействующего со сверхтонкой металлической пленкой позволил представить результаты в терминах строго вычисленных коэффициентов отражения, прохождения и поглощения.

5. Установлен ряд универсальных свойств линейно-оптического отклика сверхтонких металлических пленок при возбуждении нечетных продольных коллективных мод.

Защищаемые положения.

1. Учет динамики населенностей атомных уровней в процессе взаимодействия изотропной среды с суперпозиционным полем двух плоских волн распространяющимися под углом друг к другу приводит к появлению новых спектральных компонент в угловом спектре излучения второй и третьей гармоник.

2. Оптимальным условием для получения наиболее эффективной генерации волны суммарной частоты в одномерном фотонном кристалле является совпадение резонансов пропускания на краях запрещенных зон фотонного кристалла для всех трех взаимодействующих волн.

3. В одномерном фотонном кристалле может быть реализовано возбуждение волноводных мод в процессе нелинейно-оптического взаимодействия волн. Для этого необходимы две или более волны накачки, падающие на структуру под различными углами, а также необходимо, чтобы частота возбуждаемых мод определялась разностью хотя бы двух частот волн накачки.

4. Учет взаимодействия электронов с собственным полем электронной подсистемы приводит не только к изменению положения резонансов в спектре поглощения электромагнитного излучения сверхтонкой металлической пленкой, но и к увеличению количества резонансов в три раза.

5. При возбуждении нечетных продольных коллективных мод, сверхтонкая металлическая пленка не может поглощать более половины потока энергии падающей на нее электромагнитной волны. В условиях, когда коэффициент поглощения металлической пленки достигает максимума и равняется 0.5, коэффициенты отражения и прохождения оказываются равными 0.25.

6. В предельном переходе от двух- к трехмерному электронному газу, объемный плазмон появляется в результате возникновения эффективной связи между одночастичными электронными возбуждениями с фиксированным изменением импульса электронов равным импульсу фотонов.

Апробация результатов работы.

Основные результаты диссертационной работы отражены в публикациях в специализированных ведущих научных журналах “Квантовая электроника”, “Journal of Optical Society of America B”, “Physical Review B” и докладывались на международных конференциях: “Фундаментальные Проблемы Оптики” (СанктПетербург, 2000), “XVII International Conference on Coherent and Nonlinear Optics” (Минск, Беларусь, 2001), “International Quantum Electronics Conference” (Москва, 2002), “European Quantum Electronics Conference” (Мюнхен, Германия, 2003), “IX International laser physics workshop” (Бордо, Франция, 2000), “Научной сессии МИФИ” (Москва, 2000), семинарах кафедры общей физики и волновых процессов физического факультета МГУ им. М.В. Ломоносова. По материалам диссертации опубликовано 10 печатных работ (5 статей и 5 тезисов докладов).

Личный вклад автора.

Все результаты диссертационной работы получены автором лично.

Структура и объем работы.

Диссертация состоит из введения, четырех глав, заключения, приложения и списка цитируемой литературы. Объем работы составляет 131 страницу, включая 28 рисунков. Список цитируемой литературы содержит 82 наименования, включая 5 авторских публикаций.

СОДЕРЖАНИЕ ДИССЕРТАЦИИ Во введении обоснована актуальность выбранной темы диссертационной работы, сформулированы цели работы, отмечены научная новизна и практическая значимость, приведены защищаемые положения и кратко изложено содержание работы по главам.

Первая глава представляет собой краткий литературный обзор посвященный эффектам нелокальности оптического отклика в атомарных газах, одномерных фотонных кристаллах и сверхтонких металлических пленках. В этой главе рассмотрены механизмы генерации “запрещенной” второй гармоники в однородных атомарных газах и механизмы возникновения нелинейно-оптического отклика второго порядка в одномерных фотонных кристаллах, слои которых изготовлены из изотропных материалов. Кроме того, подробно обсуждается существенно нелокальный характер оптического отклика сверхтонких металлических пленок, толщиной порядка одного нанометра.

Вторая глава посвящена исследованию генерации “запрещенной” второй гармоники в изотропной среде центросимметричных атомов. Существует несколько механизмов генерации второй гармоники в таких средах. Один из наиболее вероятных механизмов предполагает возникновение генерации за счет пространственно-нелокальных взаимодействий атомов среды с внешним пространственно-неоднородным лазерным полем. В отличие от других механизмов, данный механизм не предполагает наличия частичной ионизации атомов среды.

Для описания нелокального атомного отклика, необходимо учесть изменение электромагнитного поля в пределах электронных оболочек атома. Мы учитываем это изменение в линейном приближении, т.е. мы учитываем не только электродипольные, но и магнитодипольные, квадрупольные, а также обусловленные градиентом пондеромоторного потенциала поля, взаимодействия атомов среды с полем.

В разделе 2.1 получена самосогласованная система неукороченных уравнений, которая описывает нелокальный оптический отклик среды центросимметричных атомов. В основе вывода данной системы уравнений лежит двухуровневое приближение. Мы рассматриваем пару атомных уровней, между которыми разрешен электродипольный переход. Для того, чтобы учесть электронные переходы обусловленные градиентом пондеромоторного потенциала поля, нет необходимости выходить за рамки двухуровневого приближения, поскольку правила отбора для таких переходов совпадают с правилами отбора для электродипольных переходов.

Напротив, для того, чтобы учесть магнитодипольные и квадрупольные переходы, необходимо выйти за рамки чисто двухуровневого приближения, так как если электронный переход в сферически симметричном потенциале является электродипольно разрешенным, то он является квадрупольно и магнитодипольно запрещенным. В нашем подходе, мы учитываем изменение поляризации атома за счет различных магнитодипольных и квадрупольных переходов, но пренебрегаем изменением населенности дополнительных атомных уровней за счет этих переходов.

Pages:     |
|



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.