WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     || 2 | 3 |

На правах рукописи

НИКОЛАЕВ АЛЕКСАНДР ЮРЬЕВИЧ ИССЛЕДОВАНИЯ И РАЗРАБОТКА ТЕХНОЛОГИЙ ОГРАНИЧЕНИЯ ВОДОПРИТОКОВ В ДОБЫВАЮЩИХ СКВАЖИНАХ, ВЫЗВАННЫХ ПРЯМЫМ СООБЩЕНИЕМ С НАГНЕТАТЕЛЬНЫМИ СКВАЖИНАМИ Специальность 25.00.17. - Разработка и эксплуатация нефтяных и газовых месторождений

Автореферат диссертации на соискание ученой степени кандидата технических наук

Тюмень – 2005

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Тюменский государственный нефтегазовый университет» (ТюмГНГУ)

Научный консультант: доктор технических наук, профессор Медведский Родион Иванович

Официальные оппоненты: доктор технических наук, профессор Федоров Константин Михайлович кандидат технических наук, с.н.с.

Кряквин Александр Борисович

Ведущая организация: общество с ограниченной ответственностью «Научно-исследовательский институт «СибГеоТех» (ООО «НИИ СибГеоТех»)

Защита состоится 8 июля 2005 года в 1600 часов на заседании диссертационного совета Д 212.273.01 при ТюмГНГУ 625039, г. Тюмень, ул. 50 лет Октября, 38.

С диссертацией можно ознакомиться в библиотеке ТюмГНГУ по адресу:

625039, г. Тюмень, ул. Мельникайте, 72.

Автореферат разослан “ 8 ” июня 2005 г.

Ученый секретарь диссертационного совета доктор технических наук, профессор В.П. Овчинников 3

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. В настоящее время большинство месторождений нефти и газа находится на поздней стадии разработки и характеризуется высокой степенью обводненности продукции (более 80%), низкой текущей нефтеотдачей (менее 25 %), наличием большого фонда простаивающих скважин. Например, только по Самотлорскому месторождению, (по состоянию на 01.01.2004) из 2328 скважин, эксплуатируемых ОАО «ТНК - Нижневартовск», бездействует 787 (33,8 %), в том числе по причине высокой обводненности – 415 (52,7 %). Результаты трассерных исследований показывают, что основной причиной высокой степени обводненности и низкой текущей нефтеотдачи здесь является образование высокопроводящих каналов фильтрации между нагнетательными и добывающими скважинами.

Для исправления сложившейся ситуации на многих месторождениях проводятся работы по закупориванию каналов преимущественно за счет закачивания гелевых, осадкообразующих и вяжущих композиций, составляющих основу потокоотклоняющих технологий. Проведение данных работ позволяет увеличить реальные дебиты нефти за счет снижения ее обводненности.

Однако успешность работ по изоляции фильтрационных водопроводящих каналов составляет не более 50%. Основными причинами низкой результативности РИР являются: избыточное количество воды и большие давления закачивания химических реагентов, что приводит к образованию дополнительных каналов в обводненных высокопроводящих пропластках. При этом в скважинах, обводненность продукции которых достигла 97 – 100 %, результативность применения потокоотклоняющих технологий, как правило, очень низкая.

Для эффективной изоляции каналов низкого фильтрационного сопротивления в таких скважинах необходимо воздействие со стороны добывающей скважины. Однако, в связи с недостаточной изученностью данной проблемы, отсутствуют эффективные технологии проведения РИР, которые обеспечивали бы высокую результативность работ (50 % и более).

Цель работы. Ограничение водопритоков в нефтяные добывающие скважины совершенствованием технологий ремонтно-изоляционных работ.

Задачи исследования 1. Анализ состояния проблемы обводнения нефтяных скважин и применяемых технологий ремонтно-изоляционных работ (РИР).

2. Разработка методики оценки барического состояния залежи с выявлением каналов опережающего внедрения закачиваемой воды, включающую программы построения уточненных карт изобар с учетом различия давлений в высокопроводящих каналах и в подпитывающих их застойных зонах, моделирование процессов фильтрации двухфазных жидкостей в пласте, прогнозирование путей поступления их в скважину.

3. Разработка и промышленная апробация эффективной технологии изоляции водопритоков в добывающих нефтяных скважинах с неоднородными коллекторами.

Научная новизна 1. Разработана методика оценки барического состояния пласта, отличающаяся от ранее известных построением уточненных карт изобар, интерпретацией диаграмм давления, получаемых при двухфазном потоке жидкости, что позволяет уточнить размеры прискважинной зоны с повышенной проницаемостью и оценить динамику продвижения по ней закачиваемой воды.

2. Научно обоснованы критерии выбора скважин для проведения ремонтно-изоляционных работ и разработана методика выбора составов изоляционных материалов для проведения РИР в условиях опережающего продвижения фронта воды.

Практическая ценность работы 1. Методика построения уточненных карт изобар, которая позволяет с наибольшей вероятностью прогнозировать участки обводнения скважин нагнетаемой водой по высокопроводящим каналам фильтрации в неоднородных коллекторах.

2. Методика интерпретации диаграмм давления, которая позволяет оптимизировать объемы закачивания рабочих агентов при РИР и реализовать эффективные технологии по ликвидации водопритоков в скважину.

3. Установка по приготовлению цементных растворов типа УПЦР 6/6, которая обеспечивает качественное приготовление тампонажных растворов и повышает эффективность проведения рекомендуемой технологии РИР.

4. Технологический регламент на проведение РИР, применение которого обеспечивает качественное выполнение работ по ликвидации водопритоков в нефтяные скважины. Внедрение авторских разработок осуществлено в ОАО «Нефтяная Компания Черногорнефтеотдача», где выполнено 16 операций по изоляционным работам в скважинах с неоднородными коллекторами и успешностью 75 %, что позволило дополнительно добыть более тыс. тонн безводной нефти.

Апробация работы. Основные положения диссертационной работы докладывались на Всероссийских, Международных и межрегиональных научно-практических и научно-технических конференциях: «Проблемы развития нефтяной промышленности Западной Сибири» (Тюмень, 2001); «Проблемы развития топливно-энергетического комплекса Западной Сибири на современном этапе» (Тюмень, 2001); «Конференция молодых специалистов» (Томск, 2003); «Пути реализации нефтегазового потенциала ХантыМансийского автономного округа» (Ханты-Мансийск, 2003); «Проблемы развития топливно-энергетического комплекса Западной Сибири на современном этапе» (Тюмень, 2003); второй Междунар. конференции Российского Государственного Университета нефти и газа им. И.М.Губкина «Геодинамика нефтегазоносных бассейнов» (Москва, 2004); на семинарах и симпозиумах: Междунар. технологический симпозиум «Повышение нефтеотдачи пластов» (Москва, 2002); Междунар. семинар «Разработка нефтяных месторождений на поздней стадии эксплуатации» (Тюмень, 2004), VI конгрессе нефтепромышленников России (Уфа, 2005).

Публикации. Основные положения диссертации изложены в 15 печатных работах, в том числе в двух патентах на изобретения и одном свидетельстве на полезную модель.

Структура и объем работы. Диссертационная работа состоит из введения, четырех разделов, основных выводов и рекомендаций, общим объемом 154 страницы машинописного текста, включая 26 рисунков и таблиц. Список использованных источников содержит 123 наименования.

СОДЕРЖАНИЕ РАБОТЫ

Во введении дается обоснование актуальности выбранной темы диссертационной работы, сформулированы цель и задачи, научная новизна и практическая значимость.

В первом разделе исследованы основные причины обводнения скважин, проанализированы существующие технологии проведения ремонтно-изоляционных работ и применяемые изоляционные материалы.

Большой вклад в изучение причин обводнения скважин, разработку технологий и материалов для проведения РИР внесли ведущие отечественные и зарубежные ученые, среди которых: В.А. Амиян, Б.В Арестов, Н.К.

Байбаков, С.Н. Бастриков, Ю.Е.Батурин, В.А. Блажевич, В.П. Гончаров, А.Т. Горбунов, C.И. Грачев, Ю.В. Земцов, Г.П. Зозуля, Р.К. Ишкаев, М.Л.Карнаухов, Н.А. Карташов, А.А. Клюсов, И.И. Клещенко, А.Т. Кошелев, И.И. Кравченко, Ю.С. Кузнецов, Е.Г. Леонов, А.В. Маляренко, А.А.

Мамедов, Е.К. Мачинский, Р.И. Медведский, Р.А. Мусаев, В.П. Овчинников, В.Н. Поляков, Ф.Л. Романюк, С.А. Рябоконь, В.М. Светлицкий, А.А.

Сержантов, В.А. Стрижнев, А.П. Телков, И.Д. Умрихин, Н.М. Шерстнев, В.А. Шумилов, В.Н. Юдин, А.К. Ягафаров и др.

Из зарубежных ученых вопросами водоизоляции занимались E.

Dolark, G.A. Einarsei, R.J. Engight, W.G. Martin, N.N.Nimerk, K.T. Presli, C.N. Rankin, E.A. Richardson, D.D. Sparline, N.D. Woodard.

Главной задачей в обеспечении стабилизации добычи нефти является предотвращение и борьба с ее обводненностью, при этом темп обводненности должен соответствовать темпу выработки запасов.

Для разработки рациональных мероприятий по изоляции посторонних закачиваемых вод и получения эффективных результатов необходимо выявить причины обводнения скважины и установить место поступления в нее воды. Для этого проводится необходимый комплекс гидродинамических и геофизических исследований, в состав которого входят методы, применяемые как на стадиях поисков и разведки месторождений, так и в процессе контроля за их разработкой.

Задача ограничения водопритока при помощи введения химических реагентов состоит в снижении водопроницаемости и повышении или сохранении проницаемости ПЗП по нефти. Большинство химических методов решают в основном первую часть задачи и, только частично, вторую.

Поэтому предпочтение при производстве водоизоляционных работ следует отдавать материалам и методам селективного воздействия.

Однако низкая успешность проводимых в настоящее время РИР и непродолжительность эффекта диктует необходимость изучения и эффективного применения большего спектра геолого-технологических данных по обводненным нефтяным скважинам, которым до настоящего времени уделялось недостаточное внимание при подборе скважин – «кандидатов» и планировании технологий применения водоизоляционных работ. Планирование РИР на основе обычного изучения особенностей эксплуатации месторождений малоэффективно без анализа и компьютерной обработки промысловой информации.

Во втором разделе обосновывается необходимый объем информации для оперативного решения задач, связанных с водоизоляционными работами по неоднородным пластам – коллекторам на примере Самотлорского месторождения.

При проведении комплекса исследований скважин ключевое значение имеют гидродинамические методы оценки характера интенсивности поступления воды в скважину. Для уточнения состава и изучения структуры потока жидкости в стволе скважины применяют методы плотнометрии, влагометрии и резистивиметрии.

В настоящее время в данных о гидродинамических исследованиях, проводимых в рамках программ контроля за разработкой нефтяных месторождений, нет информации, на основе которой можно было бы оптимально рассчитать перспективы применения тех или иных геолого-технических мероприятий (ГТМ), в том числе - РИР. В частности, нет данных о фактических значениях проницаемости (гидропроводности), скин-эффекте, пластовых давлениях. Это связано с ограниченным объемом фонтанного фонда и недостаточной информативностью выполнения исследований методом КВД в скважинах, оснащенных глубинными насосами. На практике, как правило, ограничиваются записью кривых восстановления уровня в нагнетательных скважинах по данным установленных на устье манометров.

В таких скважинах часто удается получить полезную, но ограниченную информацию о пласте и особенностях закачивания жидкости. В диссертации уделено внимание исследованию зависимости характера получаемых КПД от особенностей заводнения пластов. Показано, что изучению барического состояния пласта при выборе технологий воздействия должно уделяться первоочередное внимание.

Состояние залежи на момент замера достаточно точно описывает двумерное поле пластового давления, которое представляется в виде карт изобар. Основной проблемой такого подхода по оценке барического состояния залежи является низкий охват скважин гидродинамическими исследованиями (ГДИ), который на практике составляет не более 5 – 10 % фонда скважин. При удовлетворительном качестве исследований пластовое давление, как правило, определяется по данным ГДИ. Однако основной объем исходных для построения карт изобар данных часто не является результатом прямых замеров. В то же время построенная по неточным данным карта изобар, не отражает фактическое энергетическое состояние залежи.

Известно, что изменение пластового давления происходит вследствие отборов жидкости закачивания, поэтому для изолированного участка залежи справедливо соотношение V = V0P, (1) где V – изменение объема жидкости, м3; - коэффициент упругоемкости пласта, МПа -1; V0 - объем пласта, м3; P – изменение давления в пласте, МПа.

При этом коэффициент упругоемкости пласта следует определять по формуле = жm + п, (2) где ж - коэффициент объемной упругости жидкости, МПа-1; m - коэффициент пористости, доли единиц; п - коэффициент объемной упругости породы, МПа-1.

Коэффициент объемной упругости при двухфазном потоке жидкости (нефть + вода) можно оценить из выражения ж = (1- Kобв )н + Kобвв, (3) где Кобв – содержание воды в пластовом флюиде, доли единиц; н - коэф-фициент объемной упругости нефти, МПа ; в - коэффициент объемной упругости воды, МПа-1.

Если известны два поля давления на разные даты, то для i-го участка залежи, в пределах которого известно средневзвешенное пластовое давление Рi, изменение объема пластового флюида Vi можно определить по формуле Vi = iViPi, (4) где Vi = Si hi – объем i -го участка залежи, м3; - коэффициент упругоемкости пласта на i -м участке, МПа-1; Pi - изменение давления на i -м участке, МПа.

Суммарное изменение объема пластовых флюидов, происходящее в процессе разработки залежи, следует определять из выражения V = V. (5) i i Фактические показатели разработки за период между текущими состояниями залежи определяются по показателям работы скважин следующим образом:

Vф =, (6) Qз Qж k j j k Vф где - фактическое изменение объема залежи за период разработки, м3;

Pages:     || 2 | 3 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»