WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     || 2 | 3 | 4 |

На правах рукописи

Крайников Александр Вячеславович РАЗРАБОТКА ТЕХНОЛОГИИ МОДИФИКАЦИИ ПОВЕРХНОСТИ ПРИ ИЗГОТОВЛЕНИИ И РЕМОНТЕ ЛОПАТОК ТВД ИЗ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ С ЖАРОСТОЙКИМИ ПОКРЫТИЯМИ С ПРИМЕНЕНИЕМ СИЛЬНОТОЧНЫХ ИМПУЛЬСНЫХ ЭЛЕКТРОННЫХ ПУЧКОВ Специальность: 05. 07. 05 – "Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов"

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

Москва – 2009 г.

Работа выполнена в ОАО ММП имени В.В. Чернышева.

Научный консультант:

доктор физико-математических наук Шулов Вячеслав Александрович;

Официальные оппоненты:

доктор физико-математических наук, профессор - Лигачев Александр Егорович;

доктор технических наук - Надирадзе Андрей Борисович;

Ведущая организация: Государственное унитарное предприятие ТМКБ «СОЮЗ», г. Москва.

Защита состоится " " февраля 2009 года в на заседании диссертационного совета Д 212. 125. 08 в Московском авиационном институте (государственном техническом университете) по адресу:

125993, г. Москва, А-80, ГСП-3, Волоколамское шоссе, д. 4

С диссертацией можно ознакомиться в библиотеке Московского авиационного института (государственного технического университета)

Автореферат разослан " " 2008 г.

Ученый секретарь диссертационного совета Д 212. 125. 08, профессор, д.т.н. Зуев Ю. В.

2

Общая характеристика работы

Повышение уровня эксплуатационных свойств наиболее нагруженных и дорогостоящих деталей и узлов проточной части турбины ГТД, изготавливаемых из жаропрочных материалов, является наиболее важной задачей авиационного двигателестроения. Решение этой задачи осуществляется с использованием нескольких подходов: разработка перспективных поликристаллических и монокристаллических сплавов; модернизация способов изготовления, формования и обработки изделий и заготовок; развитие новых методов поверхностной обработки деталей и нанесения на их поверхность различных защитных покрытий, в том числе покрытий из наноматериалов.

Разработка новых жаропрочных материалов, отвечающих современным требованиям конструкторов авиационных двигателей к наиболее нагруженным деталям, прежде всего к лопаткам и дискам проточной части турбины, является важнейшей задачей авиационного материаловедения.

Для успешного решения этой задачи в течение 5-7 последних лет во Всероссийском институте авиационных материалов (ВИАМ) был создан задел в области разработки материалов для ГТД пятого и шестого поколения.

ВИАМом предлагается ряд никелевых сплавов с содержанием рения до 9 масс.

%, а также материалы на основе интерметаллидов Ni3Al, Ti3Al и TiAl. Тем не менее можно констатировать, что предлагаемые материалы не удовлетворяют требованиям авиадвигателестроения ни по эксплуатационным свойствам, ни по стоимости, ни по удельной массе. Последнее позволяет сделать вывод о необходимости создания принципиально новых материалов для авиационного двигателестроения в кратчайшие сроки.

Еще одной из актуальных задач авиационного двигателестроения является развитие наиболее прогрессивных методов инженерии поверхности деталей изготовленных из жаропрочных сплавов, особенно из жаропрочных никелевых сплавов типа ЖС6У, ЖС26НК и ЖС32ВИ. Среди таких методов можно выделить, прежде всего, нанесение гальванических покрытий, химикотермическую обработку (альфирование, азотирование, гидрирование и др.), детонационное упрочнение, плазменное нанесение покрытий, вакуумноплазменную технологию высоких энергий, электроискровой метод, анодирование, гидродробеструйную обработку, лазерную обработку, виброгалтовку, ультразвуковое упрочнение, микродуговое оксидирование и др.

Обработка поверхности деталей из никелевых сплавов пучками заряженных частиц (ионная имплантация, обработка мощными ионными пучками, обработка сильноточными импульсными электронными пучками) занимает особое место.

Это обусловлено возможностью модифицировать поверхностные слои без изменения физико-химического состояния материалов в объеме детали, причем методика модифицирования материала в поверхностных слоях толщиной от нескольких нанометров до нескольких десятков микрометров происходит в результате взаимодействия высокоэнергетических ионов и электронов с мишенью на уровне элементарных частиц, что позволяет конструировать уникальное состояние материала на нанометровом уровне.

Кроме того, обработка поверхности деталей из жаропрочных никелевых сплавов пучками заряженных частиц позволяет решить многие проблемы, связанные с «технологической наследственностью» при реализации различных операций технологического процесса изготовления этих деталей, что особо подчеркивается в публикациях одного из ведущих специалистов ЦИАМ Петухова А.Н..

Эффективность использования ионной имплантации и обработки мощными ионными импульсными пучками для деталей авиационной техники из сталей и жаропрочных титановых и никелевых сплавов уже была доказана результатами работ А.М. Сулимы, А.М. Смыслова, В.А. Шулова, Ю.Д.

Ягодкина, а облучение сильноточными импульсными электронными пучками (СИЭП), для лопаток компрессора КВД из жаропрочных сталей ферритного и аустенитного классов ЭП866ш и ЭП718ИД, работами А.Г. Пайкина и, для лопаток из титановых сплавов - публикациями А.Б. Белова. В то же время исследований, направленных на модификацию свойств деталей из жаропрочных никелевых сплавов с помощью СИЭП, до сих пор, практически, проведено не было, за исключением работ Ю.Д. Ягодкина, выполненных на модельных образцах из сплавов ЖС6У и ЖС26НК, подвергнутых облучению на ускорителе ИСЭ (Институт Сильноточной Электроники СО РАН, г. Томск) низкоэнергетическим электронным пучком (Е=10-30 кэВ).

Большой научный интерес и практическую значимость представляют ускорители СИЭП, разработанные в НИИЭФА имени Д.В. Ефремова (г. СанктПетербург), «GESA-1» и «GESA-2», которые характеризуются высокими однородностью распределения плотности энергии по сечению пучка (до 90 %) и воспроизводимостью величин средних плотностей энергии от импульса к импульсу. Толщины модифицированных поверхностных слоев при использовании ускорителей «GESA-1» и «GESA-2» достигают 20-30 мкм.

В этой связи, целью настоящей диссертации являлась разработка основ технологических процессов электронно-лучевой модификации поверхности и ремонта лопаток турбины ГТД из жаропрочных никелевых сплавов с жаростойкими покрытиями, внедрение разработанных технологических процессов в серийное производство, а также выбор наиболее перспективных материалов, которые могут стать базовыми при проектировании двигателей для истребителей 6-го поколения.

Таким образом, актуальность данной работы в научном плане, определяется - необходимостью создания новых жаропрочных материалов с низкой удельной массой, способных эксплуатироваться длительное время при высоких температурах (1400-1500 С) и высоких постоянных и знакопеременных нагрузках, а также получения экспериментальных результатов о влиянии режимов облучения сильноточными импульсными электронными пучками на физико-химическое состояние поверхности и рабочие характеристики деталей из жаропрочных никелевых сплавов, эксплуатируемых в составе ГТД, а с практической точки зрения - возможностью, уже в ближайшем будущем, внедрить некоторые электроннолучевые техпроцессы в серийное производство.

Для достижения сформулированной цели было необходимо реализовать постановку и последующее решение ряда задач методического, научного и практического плана: (1) разработка методики исследования физикохимического состояния поверхностных слоев лопаток из жаропрочных никелевых сплавов, основанной на применении таких методов, как:

электронная Оже-спектроскопия (ЭОС), рентгеноструктурный анализ, РСА), сканирующая электронная микроскопия (СЭМ), экзоэлектронная эмиссия (ЭЭЭ), рентгеновский микроанализ (РМА), просвечивающая электронная микроскопия (ПЭМ), оптическая металлография в поляризованном свете, измерение шероховатости поверхности (Ra) и др.; (2) разработка методики выбора режимов облучения СИЭП по результатам расчетов температурных полей и полей напряжений в поверхностных слоях мишеней в зависимости от времени и по результатам термодинамического и газодинамического анализа процессов, протекающих в поверхностном слое при таком воздействии на поверхность деталей из никелевых сплавов; (3) определение оптимальных режимов электронно-лучевой обработки лопаток из жаропрочных никелевых сплавов ЖС6У и ЖС26НК; (4) определение кинетики абляции материала с поверхности облучаемых СИЭП лопаток с жаростойким вакуумно-плазменным покрытием СДП-2 (NiCrAlY); (5) обоснование режимов сравнительных натурных испытаний серийных и обработанных электронным пучком лопаток из сплава ЖС26НК с жаростойким покрытием в составе двигателя РД33;; (6) анализ и обобщение расчетных и экспериментальных данных, полученных на стадиях исследования и подготовки к натурным испытаниям; (7) создание технологических карт процессов электронно-лучевой обработки и ремонта лопаток турбины из сплава ЖС26НК; (8) составление технического задания на проектирование и разработка технической документации для изготовления электронных ускорителей для серийного производства; (9) анализ и обобщение литературных данных о наиболее перспективных жаропрочных материалах на основе МАХ-фаз; (10) проведение экспериментальных исследований, направленных на получение и определение свойств объемных заготовок для изготовления лопаток и покрытий на основе МАХ-фаз системы Ni-Si-B.

Научная новизна работы. Достижение сформулированной цели, в соответствии с общим планом исследований, практически полностью отражает научную новизну полученных в диссертации данных. Впервые не только доказана высокая эффективность использования сильноточных электронных пучков с энергией 100-120 кэВ для модификации свойств и ремонта лопаток турбины из жаропрочных никелевых сплавов, но и разработаны технологические процессы электронно-лучевой обработки и ремонта этих деталей двигателя РД33.

Кроме того, впервые были получены экспериментальные результаты влияния режимов облучения СИЭП на физико-химическое состояние материала поверхностных слоев и свойства компонентов двигателя, изготовленных из никелевых сплавов, что позволяет получить уникальные данные для моделирования процессов, протекающих в твердом теле при экстремально высоких скоростях нагрева и охлаждения.

Эта часть работы является одной из важнейших составляющих решения проблемы создания высокоинтенсивных технологий электронно-лучевой импульсной обработки деталей широкой номенклатуры.

Разработанные технологии электронно-лучевой обработки и ремонта лопаток ТВД из никелевых сплавов не имеют аналогов в авиационном двигателестроении и составляют основу для создания перспективных технологий изготовления двигателей для истребителей новых поколений.

На защиту выносятся:

1. Методические особенности выбора оптимальных режимов, позволяющие построить профили распределения температуры и напряжений по глубине мишени в зависимости от времени, и определить те режимы облучения электронным пучком (при микросекундной длительности импульса, с, и высоких энергиях, 100 кэВ), когда достигаются плавление, испарение, плазмообразование, разложение и формирование различных фаз в поверхностных слоях деталей из жаропрочных титановых сплавов, на основании основных положений химической термодинамики и гидродинамики.

2. Методика определения физико-химического состояния материала в приповерхностных областях жаростойких покрытий на лопатках турбины, а также рабочих характеристик лопаток, подвергнутых различным методам поверхностной обработки.

3. Результаты исследования влияния режимов электронно-лучевой обработки на ускорителях “GESA-2” и ”GESA-1” (энергия электронов, =115-150 кэВ;

длительность импульса, =15-40 с; плотность энергии в импульсе, W=1590 Дж/см2; число импульсов n=1-10 имп) на физико-химическое состояние материала в приповерхностных областях лопаток из жаропрочных никелевых сплавов ЖС6У и ЖС26НК (химический состав, фазовый состав, структурные характеристики, остаточные напряжения и шероховатость поверхности).

4. Данные о влиянии режимов электронно-лучевой и термической обработок на эксплуатационные свойства модельных образцов и лопаток из жаропрочных никелевых сплавов.

5. Особенности методики длительных натурных испытаний облученных лопаток из сплава ЖС26НК с жаростойким покрытием СДП-2 в составе технологического изделия (РД33).

6. Результаты исследования физико-химического состояния материала в поверхностных слоях облученных лопаток из сплава ЖС26НК, подготовленных к испытаниям на технологическом изделии.

7. Электронно-лучевые технологии обработки и ремонта лопаток турбины ГТД РД33, изготовленных из сплава ЖС26НК с покрытием СДП-2.

8. Результаты исследования, полученные методом СВС-синтеза заготовок на основе МАХ-фаз системы титан-кремний-бор.

Практическая значимость работы и реализация результатов исследований. На основании результатов теоретических и экспериментальных исследований обоснованы рекомендации, обеспечивающие разработку и внедрение новых технологических процессов модификации поверхности и ремонта деталей широкой номенклатуры из жаропрочных никелевых сплавов с применением сильноточных импульсных электронных пучков.

Разработаны экологически чистые опытно-промышленные технологии электронно-лучевой обработки и ремонта лопаток турбины из жаропрочных никелевых сплавов ЖС6У и ЖС26НК, позволяющие заменить некоторые виды высокоточной механической и химической обработок, существенно повысить ресурс и надежность эксплуатации этих деталей в составе двигателя РД33.

По результатам длительных натурных испытаний на технологическом изделии, будет принято решение о возможной корректировке оптимальных режимов электронно-лучевой и финишной термической обработок и реализации внедрения электронно-лучевых технологий в серийное производство (ММП им. В. В. Чернышева) после оснащения технологического участка ускорителями “ГЕЗА-ММП” для реализации процесса облучения.

Методика исследования физико-химического состояния поверхностных слоев жаропрочных никелевых сплавов использовалась в ряде организаций Российской Федерации (ИСЭ СО РАН, НИИЯФ г. Томск, НИИЭФА им. Д. В.

Ефремова и др.).

Pages:     || 2 | 3 | 4 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»