WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 | 2 ||

Весьма перспективной областью для применения апериодических оптических элементов является оптика лазеров. В качестве таких элементов могут выступать многослойные диэлектрические зеркала оптических резонаторов, являющихся атрибутом многочисленных типов лазеров. В данной главе показано, что переход к апериодическому чередованию слоев в покрытиях зеркал позволяет трансформировать полосу генерации с целью селекции отдельных генерируемых частот. Подбором показателей преломления слоев, их числа или переходом к другому виду апериодической последовательности можно обеспечить нужное положение пиков и осуществить селекцию требуемых частот генерации. Дополнительные возможности оптимизации состава генерации появляются, если использовать в резонаторе лазера комбинацию периодического многослойного зеркала и апериодического зеркала, в котором чередование слоев осуществляется по принципу Фибоначчи Апериодические многослойные отражающие системы могут оказаться весьма полезными при создании лазеров с вертикальными микрорезонаторами. Подбирая апериодический закон чередования слоев в многослойном отражателе можно обеспечить требуемый спектральный состав лазерного излучения.

Таким образом, бурное развитие оптики фотонных кристаллов, ее тесная связь с исследованием МС, включая их апериодические модификации, указывают на открывающиеся широкие возможности качественного обновления с их помощью элементной базы разнообразных оптических устройств.

ВЫВОДЫ 1. Разработаны способы расчета, обеспечивающие сопоставление в широком диапазоне параметров структуры и оптических характеристик дифракционных решеток и многослойных систем, геометрия которых определяется суммационным принципом Фибоначчи.

2. Установлено, что связь структуры рассматриваемых оптических элементов с Золотым сечением и самоподобными признаками находит отражение в свойствах прошедшего излучения, которое обнаруживает фрактальные признаки, сочетающиеся с Золотыми пропорциями. Оценка коэффициента скейлинга по положению экстремальных точек оптических характеристик показала, что он равен коэффициенту Золотого сечения = 1,618. При этом графики оптических характеристик элементов подчиняются определенному геометрическому инварианту, на основе которого реализуются многочастные самоподобные структуры с Золотыми пропорциями.

Примечательно, что этим многочастным структурам можно найти аналоги в строении разнообразных природных объектов и произведений искусства.

3. Произведено сравнение оптических характеристик дифракционных решеток, построенных на основе обобщения суммационного принципа Фибоначчи. Расчеты картин дифракции света на решетках разных типов показали, что самоподобие положения и конфигурации дифракционных пиков наблюдается лишь в решетках, построенных на основе Золотого и Серебряного сечений. При этом коэффициенты скейлинга положения пиков (коэффициент ) и их конфигурации (коэффициент r) для решетки Фибоначчи равна = Ф и r = 4,2, а для решетки Серебряного сечения – = r = 12, где 12 = 2,41 коэффициент Серебряного сечения.

4. Осуществлено сопоставление оптических свойств многослойных структур, отличающихся типом используемого суммационного принципа. Установлено, что лишь многослойные структуры, построенные на базе ряда Серебряного сечения, подобно системе Фибоначчи, имеют оптические характеристики, в которых признаки самоподобия по положению и конфигурации экстремумов сочетаются с Серебряными пропорциями. Этот факт ставит под сомнение часто встречающийся в литературе тезис об уникальности свойств объектов и систем, построенных по принципу Золотого сечения. Близость характеристик дифракционных решеток и многослойных структур, отражающих принципы Золотого и Серебряного сечений, можно объяснить тем, что они обладают более высоким уровнем структурного самоподобия по сравнению с другими апериодическими элементами.

5. Фрактальный анализ спектров пропускания апериодических многослойных структур показал, что их фрактальная размерность слабо реагирует на увеличение числа слоев, оставаясь близкой к 1.

В то же время спектры сингулярности обнаруживают заметное уширение, расширяясь от нуля (34 слоя) до 0,54 (233 слоя). Это указывает на мультифрактальность спектров пропускания при большом числе слоев.

6. Численное моделирование показало, что самоподобные оптические свойства элементов Фибоначчи весьма устойчивы к возмущениям их структуры. Так, в частности, случайное «перемешивание» положения 10-ти процентов щелей в дифракционной решетке или слоев в многослойной структуре не приводит к существенным изменениям в их оптических характеристиках.

7. Осуществляя несложную модификацию геометрии систем Фибоначчи, можно внести заметные изменения в спектры пропускания и отражения излучения. В частности, путем внесения линейного тренда в толщины многослойной структуры можно реализовать широкодиапазонное отражение как по углам, так и по частотам световых волн от многослойной структуры. При этом появляется возможность эффективной модуляции фазы отраженной волны путем слабого изменения оптической толщины слоев.

8. Существует возможность расширить области использования оптических элементов Фибоначчи. В частности, применение многослойных зеркал Фибоначчи в лазерных резонаторах может улучшить их селективные свойства; наличие в спектрах пропускания элементов Фибоначчи системы запрещенных зон позволяет работе некоторых типов оптических переключателей и фильтров придать многоканальный характер. Установленные в данной работе свойства и характеристики оптических элементов можно использовать при оптимизации их параметров.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ 1. Н.В. Грушина, К.А. Девятилова, Ю Мин. Особенности дифракции света на решетках Фибоначчи. // Сборник тезисов международной конференции студентов, аспирантов и молодых ученых по фундаментальным наукам “Ломоносов-2007”. Секция “Физика”.

Физический факультет МГУ. 2007. с.132–133.

2. Н.В. Грушина, П.В. Короленко, М.С. Маганова. Фрактальные структуры и «Золотые» пропорции в оптике. // Сборник тезисов докладов научной конференции «Ломоносовские чтения 2007» Секция физики. Подсекция Оптика и Лазерная Физика. Москва, апрель, 2007, с.5-8.

3. Н.В. Грушина, П.В. Короленко, П.А. Пересторонин. Фрактальные структуры и “Золотые” пропорции в оптике // Препринт физического факультета МГУ им. М.В.Ломоносова, 2007, № 6, 58 с.

4. Н.В. Грушина, А.М. Зотов, П.В. Короленко, А.Ю. Мишин. Оптические свойства одномерных апериодических систем // Сборник тезисов докладов научной конференции «Ломоносовские чтения 2008» Секция физики. Подсекция Оптика и Лазерная Физика, Москва, апрель, 2008, с.5-7.

5. Н.В. Грушина, П.В. Короленко, С.Н. Маркова. Особенности дифракции света на оптических решетках Фибоначчи // Вестник Московского университета. Физика. Астрономия. 2008. №2. с.40-43.

6. Грушина Н.В., Зотов А.М., Короленко П.В., Мишин А.Ю. Оптические свойства одномерных апериодических систем // Сборник тезисов докладов научной конференции «Ломоносовские чтения 2009» Секция физики. Подсекция Оптика и Лазерная Физика, Москва, апрель, 2009, с.12-14.

7. Н.В. Грушина, А.М. Зотов, П.В. Короленко, А.Ю. Мишин О Золотом сечении и самоподобных структурах в оптике // Вестник Московского университета. Физика. Астрономия. 2009. №4. с.47-51.

8. N.V. Grushina, P.V. Korolenko, A.Y. Mishin, A.M. Zotov. Broad omnidirectional band of reflection from Fibonacci one-dimensional photonic crystals // Progress In Electromagnetics Research Symposium Abstracts, Moscow, Russia, August 18-21, 2009, p.829.

9. N.V. Grushina, P.V. Korolenko, A.Y. Mishin, A.M. Zotov. Broad omnidirectional band of reflection from Fibonacci one-dimensional photonic crystals // PIERS Proceedings, Moscow, Russia, August 18-21, 2009, p.1788-1792.

10. Н.В. Грушина, А.М. Зотов, П.В. Короленко. “Золотое сечение” в оптике // Физическое образование в вузах. 2009. т.15. №3. с.63-72.

11. П.В. Короленко, Н.В. Грушина. Золотое сечение и самоподобные структуры в оптике. M.: Книжный дом «Либроком», 2009. Учебное пособие. 136 c.

12. Грушина Н.В., Зотов А.М., Мишин А.Ю., Ю Мин. Апериодические многослойные структуры: свойства и применения // Краткие сообщения по физике, №12, 2009, 37-42.

13. Н.В. Грушина, А.М. Зотов, А.Ю. Мишин, Ю Мин. Апериодические многослойные структуры: свойства и применения // Сборник аннотаций III всероссийской молодежной школы-семинара с международным участием «Инновационные аспекты фундаментальных исследований по актуальным проблемам физики», Москва-Троицк, октябрь, 2009. с.21.

Pages:     | 1 | 2 ||






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»