WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 |   ...   | 3 | 4 || 6 |

Способ получения серых чугунов также влияет на количество фуллеренов в структуре. Это было подтверждено при исследовании серого чугуна СЧ18, полученного переплавкой литейного чугуна Л5 двумя методами: в индукционной печи и в вагранке. В первом случае в состав шихты входят литейный чугун, стальной лом, возврат производства и ферросплавы. Во втором случае входят те же материалы, но в качестве основного топлива добавляется кокс. Количество фуллеренов в СЧ18, полученном вторым способом, оказалось примерно в 2,7 раза больше (на уровне содержания в литейных чугунах), чем в первом. Это хорошо объясняется переходом в него дополнительного количества фуллеренов из кокса.

Вторая возможность образования фуллеренов в сплавах - в процессе первичной кристаллизации. Совокупность известных фактов позволяет рассматривать железо-углеродистые расплавы как среды, структурированные фуллереновыми кластерами. В этом случае оправдано использование принципов синергетики, описывающих поведение систем, далеких от равновесия, в точках неустойчивости системы, связанных с неравновесными фазовыми переходами. В этих точках реализуется принцип подчинения, в соответствии с которым, множество переменных подчиняется одной - параметру порядка. Это обусловливает, как уже отмечалось, взаимосвязь критических параметров, контролирующих границы стабильного развития процесса для предыдущей и последующей точки бифуркаций, с параметрами порядка, что позволяет использовать их для прогнозирования механических свойств.

Анализ температурных интервалов существование фуллеренов в различных состояниях и формах в сплавах проводился с использованием функции самоподобия по методике, предложенной В.С. Ивановой. Расчетным путем было определено, что при температурах 2164-1828 К и высоком содержании углерода в расплаве самоорганизуются железоуглеродистые глобулы на основе фуллеренов. Процесс самоорганизации в этом случае связан с фракционированием отдельных составляющих расплава (железа и углерода) из-за большого различия в размерах атомов.

Это согласуется с известным фактом, что железо, имея склонность к комплексообразованию, является своего рода катализатором для выделения самостоятельной фазы углерода и, следовательно, способствует отторжению атомов углерода и образованию из них скоплений. Кроме того, энергетически невыгодна их совместная кристаллизация из-за большого искажения кристаллической решетки железа.

Можно найти большое количество примеров, в которых кристаллизация материала происходит по принципу фракционирования: кристаллизация полимеров с разным молекулярным весом из расплава, некоторых металлических сплавов, компоненты которых не могут растворяться в кристаллических решетках друг друга и образуют механические смеси, где каждый компонент кристаллизуется самостоятельно и образует собственные зерна; образование зон Гинье – Престона при искусственном и естественном старении алюминиевых сплавов.

Учитывая принцип фракционирования, трудно объяснить наличие в сплавах при низких температурах твердого раствора углерода в железе (феррита). Противоречие снимается, если принять во внимание участие фуллеренов в структурообразовании сплавов. Вследствие поверхностного натяжения атомы углерода в скоплениях стремятся принять сферическую форму, что облегчает образование фуллеренов. Поисходящий процесс сфероидизации хорошо объясняет предложенный кватаронный механизм [Асхабов А.М. и др.], по которому образование фуллеренов происходит при нейтрализации заряда на поверхности, при этом нулевая энергия образования возможна только при наличии внутренней поверхности. Поэтому образование фуллеренов в этих условиях энергетически выгодно.

Таким образом, углерод как фаза, имеющая более высокую температуру перехода в кристаллическое состояние, кристаллизуется в жидком расплаве первым в виде фуллеренов. Одновременно присутствуют фуллерены, перешедшие из кокса в расплав чугуна, а затем, при его переделе, и в расплав стали. Они могут являться центрами кристаллизации для атомов железа (аналогично модификаторам из тугоплавких элементов и их соединений). Это подтверждают расчеты критического размера зародыша при кристаллизации железа традиционным методом и с использованием золотой пропорции.

Предполагаемая кинетика образования железо-углеродистых глобул представлена на рисунке 15. Температура, до которой они могут существовать, ограничивается 2164 К. По аналогии с образованием фрактальных кластеров парамагнитными соединениями в концентрированных углеводородных системах, в которых центром кластера являются карбоиды, фуллерены также могут находиться в центре фрактальных кластеров, образованных располагающимися вокруг фуллерена атомами углерода. При этом их образование происходит по принципу «захвата пространства» малым числом элементов. Такие структуры обладают устойчивостью и их окончательное формирование должно происходить при более низкой температуре, когда образуется кристаллическая решетка аустенита.

Рисунок 15 – Фракционирование атомов железа и углерода по размеру и образование зерна феррита При дальнейшем охлаждении эта фрактальная система сохраняется в структуре феррита и удерживает атомы углерода в решетке. Данный вывод подтверждается наибольшим содержанием фуллеренов в армко-железе, имеющем ферритную структуру, корреляцией количества фуллеренов и количеством феррита, выявленной для всех исследованных образцов при микроструктурном анализе.

Можно предположить, что увеличение содержания углерода до 0,006% должно сопровождаться ростом количества фуллеренов, так как меньшее содержание углерода не создает условий для образования цементита. Свыше 0,006% углерода в структуре сплавов начинает образовываться цементит. Это можно объяснить тем, что фрактальные углеродные кластеры имеют предел роста и могут удерживать ограниченное число структурных элементов. Поэтому в доэвтектоидных сталях с увеличением в них углерода происходит уменьшение количества фуллеренов (см. рисунок 10). В заэвтектоидных сталях с повышением содержания углерода количество феррита уменьшается, что сопровождается уменьшением количества фрактальных структур, частично разрушающихся с выделением свободного углерода. Он может диффундировать и участвовать в образовании повышенного количества фуллеренов и цементита на границах зерен феррита.

В белых чугунах количество фуллеренов с увеличением содержания углерода уменьшается, что должно быть связано с образованием из расплава первичного цементита, забирающего большое количество углерода.

Как показали результаты исследований, описанные выше, в углеродистых сплавах на основе железа кроме составляющей фуллеренов, которая перешла в расплав во время металлургических процессов получения сплавов и образовалась в нем во время первичной кристаллизации, присутствуют фуллерены, образующиеся в ходе структурных и фазовых превращений. При этом возможным местом их образования являются границы зерен феррита и цементита, обладающие большой дефектностью и содержащие свободный углерод в виде сегрегаций. Это подтверждается результатами МФП, показавшей связь между изменением количества фуллеренов и степенью изменения структуры, так как расчет проводился по зернам феррита. Кроме того, некоторыми авторами было обнаружено, что после отжига в углеродистых сталях наряду с ферритом и перлитом наблюдается заметное количество структурно-свободного цементита в виде грубых частиц и выделения пленочного характера, расположенных на межзеренных границах в феррите [Гринберг Е.М., Ларичева Г.Г.].

Расплав по многим причинам обладает значительной гетерогенностью химического состава и свойств из-за несовершенства строения, имеет повышенную свободную энергию, и, следовательно, является неустойчивым или метастабильным. Это приводит к образованию иерархической структуры, связанной с наличием критических состояний. При их достижении формирующаяся система спонтанно фиксирует одну из возможных с энергетической точки зрения структур и так происходит до тех пор, пока энергия, внесенная в систему при формировании расплава, не расходуется на организацию этой иерархической структуры. Каждая иерархическая ступень будет характеризоваться определенным набором структур адаптации, в числе которых, на субзеренном уровне, должны быть и фуллерены.

Адаптивность структуры к внешнему воздействию, контролирующей механическое поведение материала под нагрузкой, определяет надежность и работоспособность стали в конструкциях.

В данной работе определены меры устойчивости (i), порога адаптивности * ( Am ) и ресурс адаптивности (Ra) к структурным перестройкам углеродистых сталей после первичной кристаллизации и отжига. При этом использовали данные МФП микроструктур углеродистых сталей в совокупности с универсальным алгоритмом самоорганизации структур адаптации к внешнему воздействию, установленного для периодических самоуправляемых систем с обратной связью [Иванова В.С.]. Результаты расчета представлены в таблице 6.

Таблица 6 – Изменение значений меры устойчивости (i), адаптивности * ( Am ) и ресурса адаптивности Ra к структурным перестройкам при увеличении содержания углерода в сталях До отжига После отжига Марка С, % * * стали Am Am Ra Ra i i армко0,007 0,213 0,99 56,3 0,213 0,99 51,железо 08 0,06 0,255 0,96 45,8 0,255 0,96 57,10 0,08 0,232 0,98 11,9 0,255 0,96 46,20 0,19 0,255 0,96 33,5 0,255 0,96 74,35 0,32 0,285 0,92 23,1 0,285 0,92 5,40 0,40 0,285 0,92 13,7 0,255 0,96 5,У7 0,65 0,380 0,78 10,7 0,380 0,78 9,У8 0,74 0,324 0,87 7,0 0,380 0,79 9,У10 1,06 0,285 0,92 9,2 0,324 0,87 7,Анализ таблицы показал, что стали 35, 40, а также инструментальные стали после отжига характеризуются низким ресурсом адаптивности к структурным перестройкам, в отличие от стали 20. Это хорошо укладывается в представления, изложенные выше, так как она является последней в ряду изученных сталей, сочетающих высокую прочность и хорошую свариваемость из-за достаточно высокого количества феррита. Начиная со стали 35 происходит лавинообразное увеличение количества перлита, сопровождающееся массовым разрушением углеродных фракталов. Освободившийся углерод участвует в диффузионных процессах и образовании цементита. Поэтому путем изменения содержания углерода и режима термической обработки можно управлять динамическими свойствами структуры в широких пределах.Анализ результатов расчета также показал, что наиболее адап* тивно к тепловым воздействиям армко-железо ( Am =0,99 до и после отжига). В случае стали У8 и У10 мера адаптивности снизилась с 0,87 до 0,79. Причина различного влияния отжига (при одном и том же режиме) на стали с различным содержанием углерода может быть связано с влиянием на адаптивность фуллеренов, образующихся в стали при структурных перестройках в разных количествах, как показали данные таблицы 7.

Таблица 7 - Взаимосвязь значений относительной адаптивности структуры и числа фуллеренов до и после отжига для сталей с различным содержанием углерода Марка стали 08 10 20 35 40 У7 У8 УN110-14, шт. до 37,80 38,70 34,40 37,50 38,20 36,90 27,60 48,отжига N210-14, шт.

43,10 51,10 53,10 60,20 65,10 46,10 66,70 121,после отжига N1/N2 0,88 0,76 0,64 0,63 0,58 0,80 0,41 0,* * (Am )1 /(Am )1,00 1,02 1,00 1,06 0,96 1,00 1,10 1,Дальнейший анализ показал, что зависимость изменения адаптивности от относительного числа фуллеренов можно апроксимировать линейными зависимостями (рисунок 16).

Рисунок 16 – Взаимосвязь относительной адаптивности структуры с отношением числа фуллеренов до и после отжига для сталей с различным содержанием углерода Оказалось, что интенсивность увеличения относительной адаптивности структуры от относительного числа фуллеренов для стали У8, 35, 10, У7 и сохраняется одной и той же (линия 1). С меньшей интенсивностью проходит * рост Am с уменьшением N1 и N2 для сталей У10 и 20 (линия 2). Сталь 40 оказалась слабо чувствительной к росту фуллеренов после отжига.

Таким образом, экспериментально доказано, что самоорганизация фуллеренов является механизмом повышения адаптивности структуры стали к повышению температуры. Можно заключить, что роль фуллеренов в улучшении динамических свойств структуры стали на субзеренном уровне подобна роли дислокаций и других дефектов на атомном уровне. Поэтому управление стабильностью структуры стали, контролирующей надежность ее работы во время эксплуатации, связано с управлением содержания фуллеренов в стали путем различных технологических приемов, например, при кристаллизации, термообработке и других воздействиях.

ОБЩИЕ ВЫВОДЫ 1. Теоретически обосновано и экспериментально идентифицировано образование молекулярной формы углерода - фуллеренов в углеродистых сплавах на основе железа. Для ряда распространенных в нефтегазовой отрасли материалов (углеродистых качественных и инструментальных сталей; серых и высокопрочных чугунов) проведена количественная оценка содержания фуллеренов в структуре.

Так, после первичной кристаллизации в доэвтектоидных сталях количество фуллеренов в зависимости от содержания углерода уменьшается от 39,91014 шт./(г образца) (для Армко-железа) до 27,61014 шт./(г образца), а в заэвтектоидных – достигает 56,41014 шт./(г образца). В структуре чугунов содержание фуллеренов значительно ниже [9,8-16,91014 шт./(г образца)] вследствие преимущественного образования графитной фазы.

2. Разработана экспериментальная методика выделения фуллеренов из сталей и чугунов, основанная на электролитическом растворении матрицы с последующей экстракцией фуллеренов растворителем и позволяющая определять их количество в металле.

3. Установлены особенности и механизмы образования фуллеренов в железо-углеродистых сплавах в процессе выплавки и при термических воздействиях. В результате реализации этих механизмов в чугунах существует различное соотношение фуллеренов, перешедших в структуру феррита при переплавке литейного чугуна (статическая составляющая) и образовавшихся в результате фазовых превращений при охлаждении слитка (динамическая составляющая). При термическом воздействии количество фуллеренов в углеродистых сплавах значительно возрастает на границах зерен феррита и цементита вследствие распада последнего и появления дополнительного углерода, идущего на образование фуллеренов.

Кроме того, увеличению содержания фуллеренов способствует облегчение диффузионных процессов при нагреве. Определяющее влияние на содержание фуллеренов в сплаве оказывает продолжительность выдержки при температурах структурных и фазовых превращений, а также скорость охлаждения. Мультифрактальная параметризация структур исследованных сталей и чугунов также показала, что фуллерены являются неотъемлемой частью зерен феррита и участвуют в структурных и фазовых превращениях.

Pages:     | 1 |   ...   | 3 | 4 || 6 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»