WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     || 2 | 3 |

На правах рукописи

ВОЛКОВ Владимир Николаевич ПРОТОТИП ЭЛЕКТРОННОГО ФОТОКАТОДНОГО ВЧ ИНЖЕКТОРА СО СВЕРХПРОВОДЯЩИМ РЕЗОНАТОРОМ 01.04.20 - физика пучков заряженных частиц и ускорительная техника А В Т О Р Е Ф Е Р А Т диссертации на соискание ученой степени кандидата технических наук

НОВОСИБИРСК – 2007 1

Работа выполнена в Институте ядерной физики им. Г.И.Будкера СО РАН.

НАУЧНЫЙ РУКОВОДИТЕЛЬ:

Петров – кандидат технических наук, Виктор Михайлович Институт ядерной физики им. Г.И. Будкера, СО РАН, г. Новосибирск.

ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ:

кандидат физико-математических наук, Винокуров – профессор, Институт ядерной физики Николай Александрович им. Г.И. Будкера, СО РАН, г. Новосибирск.

кандидат технических наук, Черноусов – Институт химической кинетики и горения, Юрий Дмитриевич СО РАН, г. Новосибирск.

ВЕДУЩАЯ – Объединенный институт ядерных ОРГАНИЗАЦИЯ исследований, г. Дубна.

Защита диссертации состоится «» _ 2007 г.

в «» часов на заседании диссертационного совета Д.003.016.01 Института ядерной физики им. Г.И.Будкера СО РАН.

Адрес: 630090, Новосибирск-90, проспект академика Лаврентьева, 11.

С диссертацией можно ознакомиться в библиотеке ИЯФ им. Г.И.Будкера СО РАН.

Автореферат разослан: «» _ 2007 г.

Ученый секретарь диссертационного совета доктор физ.-мат. наук А.А. Иванов 2

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы Для создания излучения высокой мощности и высокой яркости в ЛСЭ и в источниках СИ, а также для других применений, требуются интенсивные релятивистские электронные пучки с короткими сгустками, обладающими малым эмиттансом и большим зарядом. Современные возможности позволяют получать сгустки с эмиттансом порядка 1 мм мрад и зарядом до 1 нКл с длительностью сгустков ~20 псек.

В настоящее время наиболее интенсивные и высококачественные пучки получают в ускорительных комплексах, состоящих из ВЧ фотопушки и из сверхпроводящего линака. До сих пор фотопушки выполнялись с нормально проводящими ускоряющими резонаторами. Для того, чтобы получить малый эмиттанс, в этих пушках применяется фокусировка с помощью магнитных полей соленоидов и большого темпа ускорения (порядка 2030 МэВ/м).

Фотопушки с теплыми резонаторами могут работать только в импульсном режиме.

Применение сверхпроводящего резонатора в фотопушке позволит работать в непрерывном режиме. Применение новых технологий с использованием сверхпроводящих резонаторов обеспечит получение пучков с нормализованным эмиттансом 1 мм мрад в сгустках с зарядом в два раза большим (2 нКл). Современные лазерные системы, которые применяются в фотопушках, могут обеспечить частоту повторения этих сгустков до 100 МГц, и ток пучка электронов до ~200 мА.

Цель работы проведение расчетных и инженерных исследований с целью создания ВЧ пушки со сверхпроводящим резонатором, обеспечивающей получение пучков с нормализованным эмиттансом 1 мм мрад в сгустках с зарядом больше 2 нКл и с длительностью ~20 псек. Пучок должен быть согласован с линейным ускорителем (бустером) расположенным не ближе чем 0.5 м после пушки. Резонансная частота должна быть 1300 МГц. Размеры резонатора и форма должны быть адаптированы к имеющемуся технологическому и испытательному оборудованию в DESY. Фотокатод должен быть заменяемым. Катод должен заменяться в резонаторе, находящемся при температуре 4.2 К в условиях высокого вакуума. Для этого должен использоваться стандартный магнитный манипулятор.

разработка и экспериментальное исследование прототипа (экспериментального образца) ВЧ пушки с одноячеечным сверхпроводящим резонатором. Получение высокой добротности резонатора до 1010. Тренировка резонатора возбуждением ускоряющего ВЧ поля в резонаторе с максимальным ускоряющим градиентом до 12 – 25 МВ/м. Проведение испытательных работ по замене фотокатода, находящемся при температуре 4.2 К в условиях высокого вакуума при использовании стандартного магнитного манипулятора. Получение в сверхпроводящем резонаторе фототока до 100 мкА с Теллурид-Цезиевого фотокатода, приготовленного в препарационной камере и возбуждаемого импульсами лазера с длительностью 5 псек и частотой 26 МГц. Исследование влияния работы фотокатода на характеристики сверхпроводящего резонатора.

Научная новизна 1. Впервые в мире исследован, разработан и создан сверхпроводящий узел ВЧ фотопушки (см. рис. 1), состоящий из ускоряющего резонатора, фильтра пробки и соединяющей их сверхпроводящей трубки (11).

2. Новое применение известного способа деформации резонаторов для настройки их резонансной частоты, в конструкции резонатора фильтра пробки привело к возможности регулировать углубление катода в ускоряющем резонаторе и настраивать тем самым электрическую ВЧ фокусировку пучка.

3. Впервые в мире разработана и исследована конструкция катодного узла (см. рис.2), размещенного в вакуумном корпусе (4) и содержащего узел катодного стержня (6,21,24), позволяющая заменять стержень с фотокатодом без развакуумирования системы при температуре 4.2 К.

4. В диссертационной работе впервые в мире разработано и применено охлаждение жидким азотом катодного узла, расположенного в сверхпроводящем резонаторе.

5. Обосновано новое применение в катодном узле материалов с разным коэффициентами теплового расширения, позволяющие при замене катодного стержня использовать разогрев катодного узла газообразным азотом для уменьшения давления между стержнем и теплообменником.

6. Впервые в практике работы ВЧ пушек была разработана и применена в конструкции катодного узла электрическая изоляция катода от резонатора по постоянному току.

7. Впервые в практике работы ВЧ пушек была разработана и применена в конструкции катодного узла тепловая изоляция между сверхпроводящим узлом и катодным узлом с помощью вакуумного зазора и тонкостенных нержавеющих труб.

8. Новая разработка и применение в конструкции фотопушки электрического контакта по ВЧ току между фотокатодом и ускоряющим сверхпроводящим резонатором с помощью отрезка коаксиального волновода с малым волновым сопротивлением, внутренним проводником в котором является катодный стержень, а наружным – трубка сверхпроводящего узла ВЧ пушки (11, рис.1).

9. Первое в мире обоснование, разработка и применение коаксиального фильтра, встроенного в катодный узел. Коаксиальный фильтр и сверхпроводящий резонатор фильтра-пробки образуют заградительный фильтр, который предотвращает излучение ВЧ мощности из резонатора при деформировании фильтра пробки в пределах расстояний между его стенками 7.58.5 мм (см. рис.3, размер Gap), и при любых электрических характеристиках цепей внешнего оборудования, подключаемых к катодному узлу. Излученная ВЧ мощность из резонатора через заградительный фильтр не превышает ВЧ мощность, рассеянную в сверхпроводящих стенках резонатора.

10. В диссертационной работе обосновано, исследовано и разработано в ВЧ фотопушке новое явление электрической ВЧ фокусировки для компенсации роста эмиттанса пучка. Рассчитана оптимальная величина углубления катода (2 мм), обеспечивающая получение минимального эмиттанса пучка при компенсации.

11. Впервые в мире для ВЧ пушек исследовано и разработано применение вогнутой сферической формы торца катодного стержня с фотокатодом, вдвое увеличивающую эффективность компенсации роста эмиттанса (эмиттанс 1 мм мрад для 2 нКл, вместо 1 нКл).

12. В диссертационной работе обосновано, исследовано и разработано в ВЧ фотопушке новое явление магнитной ВЧ фокусировки с применением ТЕ моды для компенсации роста эмиттанса пучка. Рассчитана оптимальная величина индукции магнитного ВЧ поля ТЕ моды (поля на оси: Bmax=0.3 Т для ускоряющего поля с Emax=50 МВ/м), обеспечивающая получение минимального эмиттанса пучка – 1 мм мрад.

13. Впервые в мире показано, что фокусирующая сила магнитной ВЧ линзы такая же, как у соленоида, с тем же распределением индукции поля вдоль оси, какую имеют действующие значения магнитного поля ТЕ моды.

14. Впервые в мире исследован случай возбуждения ТЕ и ТМ мод в одном резонаторе. ТЕ мода возбуждается на частоте некратной частоте ускоряющей моды. В этом случае разные сгустки пучка попадают в неодинаковые фазы ТЕ моды. Из-за этого эмиттансы сгустков получаются неодинаковые, то есть в пучке появляется пульсация эмиттансов сгустков.

Величина пульсации эмиттансов сгустков экспоненциально уменьшается с ростом частоты ТЕ моды. Ускоряющий резонатор имеет ТЕ021 моду с частотой fТЕ021 ~ 4285 МГц. Если применить эту моду для компенсации эмиттанса, то пульсации эмиттансов сгустков будут меньше 3%. ТЕ021 мода возбуждается от отдельного генератора, частота которого поддерживается равной резонансной частоте ТЕ021 моды.

15. Впервые в мире исследован случай, когда даже при возбуждении ТЕ моды на частоте некратной частоте повторения сгустков, пульсации эмиттанса получаются нулевые. Зависимость величины пульсаций от частоты повторения имеет много максимумов и минимумов. Однако, огибающая пульсаций экспоненциально убывает с ростом частоты. Можно сконструировать резонатор, имеющий такую резонансную частоту ТЕ моды, при которой пульсации эмиттанса нулевые.

16. В диссертации по-новому обоснован выбор ТЕ моды для получения необходимой фокусировки. Поле моды ТЕ на оси резонатора должно быть Bmax~0.3 T (для ускоряющего поля с Emax=50 МВ/м). При этом индукция поля на поверхности, в суперпозиции с полем ускоряющей моды, не должна превышать Bpeak~0.2 Т. Этому условию отвечает мода ТЕ021 (см. рис.9).

17. В диссертации определены новые условия согласования пучка фотопушки с линаком, при которых фотопушку и линак можно расположить в разных криостатах. Исследования показали, что это условие выполняется, если фотопушка имеет 3.5 ускоряющих ячейки и E > 8 МэВ. В этом случае кроссовер располагается на расстоянии от фотопушки >0.5 м, а для получения малого эмиттанса, начало линака должно располагаться в кроссовере.

18. В диссертации проведены новые аналитические исследования эффекта компенсации роста эмиттанса на основе методов электронной оптики. Исследования прояснили закономерности в результатах численного моделирования динамики пучка в ВЧ пушке. В частности, показано уменьшении эмиттанса и выравнивание плотности заряда в сгустках при ВЧ фокусировке.

Практическая ценность Основная область применения: – инжекторы электронов для линаков ЛСЭ, источников СИ. Инжекторы электронных линаков для установок с электронным охлаждением протонов и для других установок. Также источники релятивистского электронного пучка для промышленного применения и прикладных исследований.

Ниже перечислены некоторые научные центры и установки, в которых проектируется применение ВЧ фотопушек со сверхпроводящими резонаторами, в которых используются результаты, полученные в диссертационной работе (см. список литературы из диссертации):

FZD [40] – инжектор для сверхпроводящего линака ELBE для ЛСЭ.

Сгустки должны иметь заряд от 77 пКл до 1 нКл с нормализованным эмиттансом меньше 1 мм мрад.

Daresbury, Cornell и др. [72] – инжектор для сверхпроводящего микротрона-рекуператора ЛСЭ. Средний ток электронного пучка 100 мА с нормализованным эмиттансом меньше 1 мм мрад.

BESSY-FEL [73, 74] – инжектор для сверхпроводящего линака ЛСЭ.

Сгустки должны иметь заряд от 2.5 нКл с нормализованным эмиттансом меньше 1.5 мм мрад.

BNL [20, 75] – инжектор для проекта электронного охлаждения RHIC.

Сгустки должны иметь заряд от 5 нКл с нормализованным эмиттансом меньше 5 мм мрад.

AES [76, 77] – инжектор для микротрона-рекуператора ЛСЭ. Сгустки должны иметь заряд от 10 нКл с нормализованным эмиттансом меньше 10 мм мрад.

SASE-FEL [78, 79]. Сгустки должны иметь заряд от 1 нКл с нормализованным эмиттансом меньше 1 мм мрад.

PKU-FEL [80] – Сгустки должны иметь заряд до 100 пКл с нормализованным эмиттансом меньше 2 мм мрад.

CEBAF [81].

Публикации и апробация работы Основные результаты, вошедшие в диссертацию, изложены в публикациях, приведенных в списке литературы. Основные результаты работы докладывались на ускорительных конференциях (PAC, EPAC, APAC, FEL) и публиковались в рецензируемых журналах (Nucl. Instr. and Meth., Physical Review ST AB). Всего по теме диссертации опубликовано 30 работ, из которых опубликованы в рецензируемых журналах [2,3, 6, 8], издан препринт [1] (см. список литературы, стр.15-16).

На защиту выносятся 1) Конструкция сверхпроводящего узла ВЧ пушки, состоящего из ускоряющего резонатора и резонатора фильтра пробки и связывающей их трубки. Ускоряющий резонатор обеспечивает необходимый темп ускорения.

Фильтр пробка предотвращает проникновение ВЧ мощности в катодный узел и во внешние цепи. Трубка используется как внешний проводник низкоомной коаксиальной линии для обеспечения ВЧ контакта катода с резонатором. За счет продольных деформаций резонатора фильтра пробки изменяется углубление катода в ускоряющем резонаторе и обеспечивается настройка электрической ВЧ фокусировки в фотопушке.

2) Конструкция катодного узла, который обеспечивает замену катода без развакуумирования системы. Обеспечивает необходимый теплоотвод от катодного стержня к кулеру, охлаждаемому жидким азотом. При этом температура фотокатода (самая горячая область катодного узла) превышает температуру жидкого азота на несколько градусов.

3) Принцип работы заградительного фильтра, состоящего из фильтра пробки (сверхпроводящий резонатор) и коаксиального фильтра. Совместная работа коаксиального фильтра и фильтра пробки, деформируемого для настройки ВЧ фокусировки пучка, исключает влияние внешних электрических цепей при любых электрических параметрах этих цепей.

4) Способы компенсации эмиттанса. Из-за того, что длительность электронных сгустков соизмерима с периодом ускоряющего высокочастотного поля и электронный сгусток имеет значительный заряд, то поперечный эмиттанс растет при удалении от катода, если не применять специальных мер. Для того, чтобы скомпенсировать рост эмиттанса, вызванного этими причинами, в которых все действующие на пучок поперечные силы линейны по радиусу, автором предложен способ компенсации роста эмиттанса с помощью электрической и магнитной ВЧ фокусировки.

Структура диссертации Работа состоит из введения, четырех глав, заключения и списка литературы, включающего 81 наименование. Диссертация содержит страницу машинописного текста, в том числе 50 рисунков и графиков, таблиц.

СОДЕРЖАНИЕ РАБОТЫ

Pages:     || 2 | 3 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»