WWW.DISSERS.RU

...
    !

 >> 
Pages:     | 1 ||

[8] Coleman C. Circle decompositions of rings, in particular, Munn rings. Doctoral thesis, University of Sydney, 1999.

[9] Coleman C., Easdown D. Decomposition of rings under the circle operation // Beitrge zur Algebra und Geometrie. 2002. Vol. 43, 1. P. 55 88.

[10] Coleman C., Easdown D. Complementation in the group of units of a ring // Bull. Austral. Math. Soc. 2000. Vol. 62, 2. P. 183192.

[11] Coleman C., Easdown D. Circle subgroups and submonoids of Munn rings // In preparation.

[12] Du Xiankun. The structure of generalized radical rings // Northeastern Math. J. 1988. Vol. 4, 1. P. 101114.

[13] Du Xiankun. The rings with regular adjoint semigroups // Notheastern Math. J. 1988. Vol. 4, 4. P. 483488.

[14] Du Xiankun. The adjoint semigroup of a ring // Comm. Algebra. 2002.

Vol. 30, 9. P. 45074525.

[15] Goodearl K. R. Von Neumann Regular Rings. Robert E. Krieger Publishing Co. Inc., Malabar, FL, 2nd edition, 1991.

[16] Hall T. E. Identities for existence varieties of regular semigroups // Bull.

Austral. Math. Soc. 1989. Vol. 40. 1 P 5977.

[17] Heatherly H. E. Adjoint groups and semigroups of rings // Rivista Di Matematica Pura Ed Applicata 1990. Vol. 6. P 105108.

[18] Heatherly H. E. Adjoint groups of radical rings // Riv. Math. Univ. Parma 1999. Vol. 6, 2. P. 5568.

[19] Heatherly H. E., Tucci R. P. Central and semicentral idempotents // Kyungpook Math. J. 2000. Vol. 40, 2. P 255258.

[20] Heatherly H. E., Tucci R. P. Adjoint regular rings // Int. J. Math. Math.

Sci. 2002. Vol. 30, 8. P. 459466.

[21] Heatherly H. E., Tucci R. P. The circle semigroup of a ring // Acta Math. Hungar. 2001. Vol. 90, 3 P. 231242.

[22] Heatherly H. E., Tucci R. P. Adjoint clifford rings // Acta Math. Hungar.

2002. Vol. 95, 12. P. 7582.

[23] Heatherly H. E., Tucci R. P. Maximal ideals in near-rings and semigroups // Quaestiones Mathematicae 2002. Vol. 25, 2. P. 259268.

[24] Heatherly H. E., Lewallen J. A., Tucci R. P. The adjoint semigroup of a ring // J. PU.M.A., Pure Math. Apple. 2003. Vol. 14, 12, P. 5767.

[25] Jacobson N. The radical and semi-simplisity for arbitrary rings // Amer. J.

Math., 1945. Vol. 67, 2. P. 300320.

[26] Kelarev A. V. The groups of units of a commutative semigroup ring // J.

Algebra 1994. Vol. 169. P. 902912.

[27] Kelarev A. V. Generalized radical semigroup rings // Southeast Asian Bull.

Math. 1997. Vol. 21, 1. P. 8590.

[28] Kelarev A. V. On rings with inverse adjoint semigroups // Southeast Asian Bull. Math. 1999. Vol. 23, 3. P. 431436.

[29] Neumann J. On regular rings // Proc. Nat. Acad. Sci. 1936. Vol. 22. P. 707 743.

[30] Perlis S. A characterization of the radical of an algebra // Bull. Amer. Math.

Soc. 1942. Vol. 48, P. 128132.

[31] . ., . . // . . . -. 1999. 14 (., . . 2.) .23 28.

[32] Volkov M. V., Tanana G. V. On Sums of Radical and Regular Rings // Int. Algebraic conference, St-Petersburg. 2002. P. 173174.

[33] . ., . . // . . . 2003. .9, 1. . 7175.

[34] Volkov M. V., Tanana G. V. On Sums of Radical and Regular Rings // J. Math. Sci. 2005, Vol. 128. 6. 2005. P. 33783380.

[35] . . // .

. . . . . 2005. P. 113114.

[36] . . e- // . . . -. 2005. . 38. (., . . 8.) . 170 175.

22.01.2007. 60 84 1/16.

. . . . 1,0.

100. . , . 83, . , 51. .

Pages:     | 1 ||
 >> 






2011 www.dissers.ru -