WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 || 3 |

Современные подходы к управлению наукоемким производством базируются на концепции SCM (управление цепями поставок), и разработка логистической системы предприятия теперь в обязательном порядке, согласно данной концепции, включает принципы стратегического взаимодействия с поставщиками, смежниками, эксплуатантами и другими участниками процессов ЖЦ продукции. С другой стороны, для информационной интеграции процессов, протекающих в ходе жизненного цикла продукции, была разработана новая концепция — CALS, реализованная позднее в виде соответствующих CALS (ИПИ)-технологий.

Объединение прогрессивных логистических и информационных технологий создало общую основу для интеграции различных потоков в глобальную информационную логистическую систему, обеспечивающую высокую скорость реакции на изменения внешней среды.

Это означает переход от локальной логистики (на уровне единичного предприятия) к глобальной, включающей задачи обеспечения оптимальной временной и пространственной организации потоковых процессов всех предприятий-участников логистической цепи на основе единого информационного пространства.

Таким образом, эффективность хозяйственной деятельности современного предприятия зависит от достижения управляемого резонанса логистической цепи – результата синхронизации его внутренних потоковых процессов и синхронизации потоковых процессов логистических цепей, участником которых оно является, представленным на рис. 1.

Преимущества логистических систем поддержки ЖЦ изделия определяются качеством организации и управления информационными потоками, идущими от точки возникновения потребности в продукте через все звенья и этапы ЖЦ к системам управления производством. На данный момент исследования в области логистики сконцентрированы на разработке методов построения интегрированного информационного пространства и систем оперативного управления, позволяющих координировать потоковые процессы предприятий-участников ЖЦ в режиме реального времени.

Рис. 1. Эволюция логистической концепции

Ключевые показатели управления логистической системой связаны с выполнением триады взаимосвязанных целей «быстрее-лучше-дешевле», обеспечивающих увеличение сбыта продукции и получение прибыли, к чему стремится любая предпринимательская деятельность. Поэтому в качестве обобщающего показателя эффективности функционирования системы логистической поддержки ЖЦ изделия (СЛП ЖЦ) в работе взят общесистемный критерий эффективности производственно-хозяйственной деятельности, получаемый с помощью стоимостных оценок результатов и затрат на ведение бизнеса:

Э = Р-З max,

Стоимостная оценка результатов Р складывается из показателей объемов реализации продукции и цены за единицу i-того вида продукции, (; n- количество видов выпускаемой продукции). Поток затрат производственно-хозяйственной деятельности за период времени Т складывается из трех частей: постоянной части затрат, связанной с административными расходами, арендными платежами и т.д., и переменной части, зависящей от темпа выпуска продукции и времени t, и затрат, обусловленных выпуском невостребованной на рынке продукции.

В свете вышеизложенного структура обобщенного показателя эффективности выглядит следующим образом:

Производственно-технологический цикл наукоемкого производства создается и замыкается спросом, обуславливающим образование контуров обратной связи между внешней средой и производителем сложной техники. Изменение спроса вызывает переход предприятий-участников ЖЦ изделия с одного режима функционирования на другой, что влечет за собой колебания переменных и структуры материальных потоков и в конечном итоге приводит к дестабилизации производственных функций.

При интеграции в систему поддержки ЖЦ изделия разнородных, часто географически распределенных хозяйственных и коммерческих структур возникает ситуация десинхронизации логистических цепей, когда незначительные колебания спроса конечного потребителя вызывают лавинообразный эффект нарастающих колебаний переменных материальных потоков других участников процесса, получившая название Bullwhip-эффект (эффект кнута) (рис.2).

Рис. 2. Эффект кнута

В основе эффекта кнута лежат инерционные свойства потоковых процессов любого вида деятельности, последствиями которых являются:

  • ошибки в прогнозировании спроса, ведущие к отклонению от плановых объемов производства и поставок продукции, и порождающие создание дополнительных страховых запасов;
  • увеличение размеров партий поставок;
  • проблема непрерывности информационного потока, связанная со спецификой приема и прохождения информации.

Нарушение непрерывности и ритмичности процессов ЖЦ в рамках единого информационного пространства неминуемо приводит к десинхронизации, следовательно, к снижению эффективности наукоемкого производства.

Для решения проблем, связанных с появлением эффекта кнута и поиска путей управления инерционными свойствами хозяйственной деятельности, при разработке логистической системы поддержки ЖЦ необходимо применить основы кибернетической концепции исследования сложных систем, так как современная логистическая система – это в первую очередь информационная система, и именно кибернетика позволяет рассмотреть экономические системы как информационные системы с обратной связью.

Каждый элемент структуры кибернетической модели СЛП ЖЦ можно представить в виде накопителя, характеристикой состояния которого является уровень (объем) находящегося в нем содержимого – это могут быть материалы, денежные средства, технико-экономическая документация, программы выпуска продукции и планы обслуживания, изменения конфигурации, статистика эксплуатации; трудовые ресурсы, заказы потребителей на поставку изделий и их обслуживание и т.д. Понятию «уровень» соответствует экономическая категория запасов. Уровни характеризуют возникающие накопления внутри системы, объединяющей участников ЖЦ.

Уровни СЛП ЖЦ изделия связаны между собой потоками; в общем случае каждый уровень может иметь несколько каналов входящих и исходящих потоков. В свою очередь темпы определяют уровни, являющиеся определенным по времени интегралами потоков.

Значения уровней получаются с помощью аппарата конечно-разностных уравнений, для реализации на ЭВМ используются языки имитационного динамического моделирования.

Пусть – значение уровня содержимого -го накопителя системы в момент времени t. Тогда значение уровня в следующий момент времени, накопленный благодаря различию в темпах входящего и исходящего потоков, можно получить с помощью разностного уравнения:

+ Т(),

где Т – период времени, в течении которого происходит накопление.

Скорость протекания процесса перехода предприятия с одного режима функционирования на другой в каждом звене ЖЦ изделия определяется временным промежутком, в течение которого изменяются величины темпов потоков и уровней. Чем меньше длительности переходных процессов, тем быстрее система ЖЦ изделия адаптируется к изменениям рыночной ситуации, тем эффективнее логистическая поддержка. Скорость протекания переходного процесса зависит от вида и продолжительности временных запаздываний, образующихся в контурах потоковых процессов ЖЦ.

Запаздывание характеризует процесс преобразования, в результате которого на основе заданного темпа входящего потока устанавливается темп потока на выходе и представляет собой время, необходимое для достижения определенного качественного и количественного показателя потока на выходе. Запаздывания изображаются в модели набором разностных уравнений темпов и уровней, характеризующих рассматриваемый поток.

Уровень Lt+1, находящийся в запаздывании, накапливается благодаря различию в темпах входящего INt и исходящего OUTt потоков:

Lt+1 = Lt + Т( INt – OUTt ),

Темп исходящего потока определяется следующим уравнением:

OUTt+1= Lt / D,

где D – среднее время, необходимое для преодоления запаздывания (среднее время запаздывания). Запаздывания в параллельных процессах группируются путем переноса в общий канал потока. Запаздывания, возникающие в процессах, следующих последовательно, группируются в представлении общего запаздывания. Запаздывания высшего порядка получаются путем проведения потока через два или более последовательно расположенных запаздывания первого порядка:

INt OUTt+1

Рис. 3. Запаздывание последовательных процессов

Запаздывание третьего порядка определяются тремя парами уравнений, аналогичных вышеприведенным, связывающих между собой темпы потоков на входе и на выходе из уровней L1, L2, L3.

Базовую структуру СЛП ЖЦ изделия можно представить в виде уровней-этапов и процессов ЖЦ изделия – подсистем проектирования, производства и сбыта, складов готовой продукции, поставщиков материалов, транспортных организаций, потребителей готовой продукции и служб ТОиР, связанных циркулирующими между ними материальными и информационными потоками, и своеобразных уровней-запаздываний (рис. 4). Переменные уровни, темпы потоков и запаздывания отражают внутреннюю сущность СЛП ЖЦ наукоемкого предприятия.

На основе исследования динамики протекания ключевых этапов ЖЦ - производства и сбыта продукции – в работе разработана система показателей с выделением временных параметров хозяйственных процессов.

Рис. 4. Базовая структура системы логистической поддержки ЖЦ изделия

В третьей главе «Разработка моделей и алгоритмов построения системы логистической поддержки интеграции основных процессов и участников ЖЦ продукции» разрабатываются экономико-математические модели и алгоритмы управления, отражающие следующие аспекты ЖЦ изделия: процесс снабжения материалами, незавершенное производство, выпуск и реализация готовой продукции, финансово-экономические аспекты, управление трудовыми ресурсами. Модель содержит 96 показателей (56 переменных и 40 параметров) и представляет собой систему из 60 конечно-разностных уравнений.

Так как модель отражает замкнутый производственно-технологический контур ЖЦ изделия, с целью воспроизведения динамики внешней среды и поведения системы логистической поддержки ЖЦ в изменившихся внешних условиях выделен в качестве экзогенной переменной потребительский спрос.

В связи с принципом сжатого изложения результатов диссертационного исследования для наглядности в автореферате приведены 2 блок-схемы: алгоритмов управления этапом сбыта и потоком трудовых ресурсов на производстве.

Блок-схема алгоритма управления этапом сбыта представлена на рис. 5.

В потоке заказов, поступающем на производство из подсистемы сбыта, выделяются два потока: заказы, удовлетворяемые за счет складских запасов готовой продукции на производстве, и заказы, удовлетворяемые непосредственно за счет производства продукции. Регулирование складских запасов на производстве предусматривает предотвращение появления производственных заказов, ведущих к производству избыточной продукции и затовариванию складов.

в ПП

да

из ПП

Рис. 5. Блок-схема алгоритма управления этапом сбыта

При построении модели этапа производства принимается, что процесс производства состоит из двух ключевых процессов: на первом определяется темп запуска изделий в производство, на втором этапе рассматривается незавершенное производство и определяется темп выпуска готовой продукции.

Деятельность производственных переделов этапа производства представлена двумя потоками: поток продукции для пополнения собственных запасов и поток продукции для удовлетворения требований подсистемы сбыта.

Первый процесс этапа производства предусматривается предотвращение появления избыточной продукции на складах предприятия через управление потоком производственных заказов и управлением темпом запуска в производство продукции. Второй процесс этапа производства определяет материальный поток готовой продукции с предприятия, рассчитываемый как сумма двух потоков: поток продукции, изготовленной по заказам покупателей, с учетом производственного запаздывания и поток продукции, отгружаемый со складов предприятия с учетом запаздывания отгрузки.

Разработанная модель этапа производства описывает замкнутый контур обратной связи, образующийся в процессе взаимодействия этапов производства и сбыта продукции, включающем три главных потока:

  1. поток заказов на предприятие на поставку изделий;
  2. запаздывание сообщений о предстоящих поставках продукции с производства по каналам информационной связи;
  3. готовая продукция по каналам материального потока с предприятия в сбытовые подсистемы.

При моделировании процесса снабжения материалами было предусмотрено предотвращение вложения финансовых средств в закупку материалов и комплектующих, идущих на производство невостребованной продукции, в конечном итоге – избыточных запасов.

Так как динамика потока заказов потребителей техники влияет на колебания темпа наукоемкого производства, который, в свою очередь, тесно связан с проблемой обеспечения квалифицированным персоналом и регулированием его численности, в динамическую модель предприятия входит разработка алгоритма управления потоком трудовых ресурсов (рис. 6).

В модели разработаны уравнения для расчета темпов найма и увольнения рабочих. В качестве характеристики текучести рабочей силы на производстве вводится показатель общего изменения численности рабочих. В качестве характеристики стабильности управления трудовыми ресурсами рассматривается показатель несоответствия фактической и желательной численности рабочих.

да нет, 0

Pages:     | 1 || 3 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»