WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 || 3 |

Диэлектрические материалы, в большинстве случаев, имеют линейную зависимость от температуры. В процессе исследования установлена подобная зависимость отдельно для материалов и компонентов, а также модернизированной системы электрической изоляции в целом.

Полученные экспериментальные значения теплопроводности показывают эффективность применяемых технологий изготовления компонентов системы изоляции и всей системы в целом. Значения коэффициентов теплопроводности каждой исследуемой композиции в диапазоне температур t от 0 до 250°С могут быть представлены линейной зависимостью вида:

а) для материала, состоящего из слюдяной бумаги и стеклоткани, пропитанного компаундом Элпласт-180ИД методом окунания:

, Вт/(м·К), (1)

где t – температура, °С;

б) для материала, состоящего из полиимидной пленки, слюдяной бумаги и стеклоткани, пропитанного компаундом Элпласт-180ИД методом окунания:

, Вт/(м·К); (2)

в) для материала, состоящего из слюдяной бумаги и стеклоткани, пропитанного компаундом Элпласт-180ИД методом вакуум-нагнетательной пропитки:

, Вт/(м·К); (3)

г) для материала, состоящего из полиимидной пленки, слюдяной бумаги и стеклоткани, пропитанного компаундом Элпласт-180ИД методом вакуум-нагнетательной пропитки:

, Вт/(м·К); (4)

д) для материала, состоящего из стекломикаленты ЛМК-ТТ, пропитанного методом окунания в лак КО-916 (ОАО “ВЭлНИИ”):

, Вт/(м·К). (5)

На рисунке 3 представлены зависимости теплопроводности от температуры композиций, пропитанных по технологии вакуум-нагнетательной пропитки (VPI) и окунанием.

При сравнении полученных значений новых компонентов системы электрической изоляции со значениями композиций на основе стекломикаленты ЛМК-ТТ, пропитанной методом окунания в лак КО-916 (рис. 3), видно значительное увеличение теплопроводности у новой изоляции, полученной методом VPI.

В третьей главе на основании проведенного анализа технологии пропитки и применяемых электроизоляционных материалов при ремонте тяговых электродвигателей приведена разработанная технология модернизации системы электрической изоляции класса нагревостойкости Н, улучшающая ее электрические характеристики, сокращающая количество технологических операций и время изготовления одного тягового электродвигателя.

При разработке такой технологии решались следующие задачи.

Для замены пропиточных лаков предложены пропиточные компаунды на основе олигоэфиримидов (Элпласт-155ИД, Элпласт-180ИД и Элпласт-220ИД). Технические характеристики компаундов приведены в таблице 1.

Таблица 1.

Технические характеристики пропиточных компаундов Элпласт

Наименование показателя

Элпласт-155ИД

Элпласт-180ИД

Элпласт-220ИД

Электрическая прочность, кВ/мм

22

25

22

Удельное объемное сопротивление, Ом·м

1012

1013

5.1012

Условная вязкость, с, по ВЗ-246 с 4 мм

40-100

30-80

(при 50°С)

60

(при 50°С)

Время желатинизации, мин

20

10

10

Цементирующая способность, Н

300

392

250

Приведенные данные свидетельствуют, что компаунды обладают высокими электрическими свойствами и вязкостью, близкой к вязкости пропиточных лаков. Компаунды имеют меньшую цементирующую способность в сравнении с эпоксидными компаундами, что позволяет производить ремонт узлов тягового электродвигателя без больших энергетических затрат. Одно из основных достоинств компаундов на основе олигоэфиримидов – это короткое время желатинизации, что уменьшает вытекание компаунда из пропитываемых узлов во время их термообработки по сравнению с вытеканием при пропитке эпоксидными компаундами и пропиточными лаками. На рисунке 4 приведена зависимость степени полимеризации компаунда Элпласт-180ИД от времени термообработки при разных температурах.

Режимы полимеризации компаунда учитывали возможность технологического оборудования заводов. Не на всех предприятиях возможно обеспечить в печах температуру 180°С. Оптимальным режимом термообработки является ступенчатый нагрев, исключающий внутренние механические перенапряжения. В условиях производства выдержать такой режим практически невозможно из-за больших габаритов ремонтируемых узлов, и этим режимом пренебрегают.

На основании полученных результатов разработан режим пропитки и термообработки узлов ТЭД при использовании компаунда Элпласт-180ИД, температура и длительность этапов которого приведены на рисунке 5.

На рисунке 5 видно явное преимущество процесса пропитки и сушки по времени (более чем в 2,5 раза) при использовании нового пропиточного состава (компаунда) в сравнении с известным (лаком).

При использовании компаундов в качестве пропиточных составов при ремонте тяговых электродвигателей становится невозможным применение серийных пропитанных стеклослюдинитовых лент из-за наличия в них большого количества летучих веществ. В ходе выполнения работы были разработаны новые стеклослюдинитовые ленты – на основе компаундов Элпласт. Разработанные ленты технологичны, хорошо утягиваются и имеют срок годности не менее 1 года (у лент, пропитанных лаком, максимальный срок хранения 6 месяцев в зависимости от применяемого лака). Полученные ленты полностью совместимы с пропиточным компаундом, что позволяет получать более монолитную изоляцию.

Исследован процесс перемещения пропиточного состава внутри изоляции во время проведения вакуум-нагнетательной пропитки. В процессе пропитки узлов ТЭД давление действует на пропиточный состав, который в свою очередь, обжимая изоляцию, производит так называемую гидростатическую опрессовку изоляции. Так как изолируемый по новой технологии узел перед пропиткой находится только в разогретом состоянии (до 70°С), связующее пропитанной стеклослюдинитовой ленты достигает вязкости, при которой возможно его перемещение при внешнем воздействии на изоляцию (прессование, гидростатическая опрессовка). В работе исследована текучесть связующего из ленты при различных давлениях и температурах.

Текучесть характеризуется способностью связующего в композиции к течению и заполнению формы в условиях переработки (при прессовании или других видов переработки) при постоянных давлении и температуре.

Метод определения текучести заключается в определении процентного соотношения массы образца до и после воздействия на него давления:

, (6)

где Т – текучесть пропиточного состава в изоляции, %;

М1, М2 – масса образца до и после испытания соответственно, г.

Режимы определения текучести подбирались таким образом, чтобы они соответствовали возможностям технологического оборудования заводов. На большинстве заводов пропитку узлов ТЭД возможно производить под давлением не более 2 атм. В идеальном случае на всех заводах ОАО “РЖД” необходимо произвести техническое “перевооружение” пропиточных отделений для достижения качественных показателей пропитки изоляции. Были определены зависимости текучести от времени опрессовки под давлением при температуре 50°С исходной ленты и после ее хранения. Преимущество нового пропиточного состава в ленте по сравнению с лаками заключается в том, что даже после года хранения связующее в ленте обладает достаточно высокой текучестью. Текучесть пропиточного состава в новых лентах сильно зависит от времени выдержки под давлением, необходимом для перемещения 20-25% связующего и заполнения им всех возможных пустот и полостей внутри изоляции. Показано, что выдержка под давлением должна составлять не менее 1 часа. За это время, если нет подогрева технологического оборудования до 50°С, пропиточный компаунд и пропитываемый узел успевают остыть. Вязкость состава в ленте увеличивается и тем самым затрудняется проникновение пропиточного состава во внутренние слои изоляции. Для сокращения времени выдержки во время пропитки изоляции узла необходимо увеличить давление.

На рисунке 6 представлена зависимость текучести связующего пропитанной ленты при давлении опрессовки 6 атм.

При увеличении давления опрессовки до 6 атм. при использовании новых стеклослюдинитовых лент процесс пропитки можно сократить до 0,5 часа.

Для определения оптимальной температуры пропитки, при которой происходит перемещение связующего внутри изоляции, была изучена зависимость текучести пропиточного состава ленты от температуры при давлениях 2 и 6 атм., (рис.7).

Таким образом, обоснована оптимальная температура пропитки (50–70°С), показанная на приведенной ранее диаграмме (рис. 5) и иллюстрирующей возможности компаунда Элпласт-180ИД и новых пропитанных стеклослюдинитовых лент. При проведении пропитки при температуре выше 100°С вязкость компаунда резко возрастает, в связи с чем текучесть состава ухудшается.

В серийных лентах полимеризация связующего наступает при температуре выше 120°С, а оптимальная текучесть достигается при температуре, близкой к 100°С. Температурный диапазон текучести состава серийной изоляции меньше в сравнении с новой. Проведение пропитки при более высоких температурах не выгодно как технологически (происходит термостарение пропиточного состава), так и энергетически (необходимо больше энергозатрат на разогрев связующего).

Применение системы изоляции, изготовленной по технологии с оптимизированными режимами и новыми материалами, позволяет получить витковую изоляцию, для которой характерно большее пробивное напряжение. Увеличение пробивного напряжения витковой изоляции происходит за счет перемещения пропиточного состава из корпусной изоляции в витковую.

Таким образом, технология вакуум-нагнетательной пропитки является наиболее эффективной для улучшения электрических и теплофизических свойств системы электрической изоляции тяговых электродвигателей. Представлены оптимальные режимы пропитки и термообработки узлов тяговых электродвигателей, обеспечивающие высокие электрические и теплофизические характеристики при изготовлении изоляции на имеющемся оборудовании ремонтных заводов ОАО “РЖД”.

В четвертой главе описано практическое применение новых электроизоляционных материалов класса нагревостойкости Н для модернизации системы электрической изоляции тяговых электродвигателей. Даны рекомендации для использования разработанных материалов по новой технологии пропитки и термообработки в соответствии с имеющимся оборудованием. ОАО “ВЭлНИИ”, исследовав систему изоляции на основе пропитанной стеклослюдинитовой ленты Элизтерм-180ТПМ и пропиточного компаунда Элпласт-180ИД, сделало заключение, что данная система изоляции удовлетворяет требованиям, предъявляемым к изоляции тяговых электродвигателей.

Исследования ОАО “ВЭлНИИ” проводились на образцах в виде моторет.

Образцы подвергались циклическим испытаниям, где после каждого цикла определялся ряд электрических параметров системы.

В один цикл входили:

  1. Тепловое старение изоляции в течение 96 часов (для каждого класса нагревостойкости выбор температуры старения осуществлялся согласно ГОСТ 10518-88).
  2. Электрическое старение изоляции при воздействии напряжения 1,5 кВ в течение 8 часов.
  3. Воздействие смены температуры (термоудары). Выдержка при минимальной температуре ( 50)°С в течение 1 часа, при максимальной 130 °С в течение 1 часа.

Количество циклов – 10.

Впервые модернизированная система электрической изоляции, изготовленная по новой технологии пропитки и термообработки, была опробована на Улан-Удэнском электровозовагоноремонтном заводе. Отремонтировано восемь тяговых электродвигателей НБ-418к6, которые были установлены на один электровоз.

Данный электровоз проходит эксплуатационные испытания на Восточно-Сибирской железной дороге и в настоящее время имеет пробег более 500000 км. Замечания по снижению контролируемых параметров электрической изоляции в процессе эксплуатации отсутствуют.

На основании положительных результатов по ресурсным испытаниям и технологических данных ПКТБ по локомотивам совместно с ЗАО “Электроизолит” разработало технологическую инструкцию на изолировку, пропитку, окраску и сушку электрических машин с системой электрической изоляции класса нагревостойкости Н (ТИ 103.11.483–2007). Данная инструкция была утверждена 26.12.2007 г. вице-президентом ОАО “РЖД” Гапановичем В.А.

Изменения, связанные с заменой серийных электроизоляционных материалов на новые класса нагревостойкости Н, внесены в конструкторскую документацию на “Тяговый электродвигатель постоянного тока ТЛ-2К1”. Конструкторская документация “Тяговый электродвигатель постоянного тока ТЛ-2К1 ТЕ.155.034РСБ-Н” утверждена и разослана на ремонтные заводы ОАО “РЖД” для проведения ремонта тяговых электродвигателей с модернизированной системой электрической изоляции класса нагревостойкости Н.

На основании разработанных документов (технологической инструкции и конструкторской документации) началось опытно-промышленное применение новых электроизоляционных материалов и компонентов системы электрической изоляции класса нагревостойкости Н на Челябинском электровозоремонтном заводе.

Выводы

Pages:     | 1 || 3 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»