WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 || 3 | 4 |   ...   | 5 |

Основные результаты работы доложены на следующих конференциях: Уральской школе металловедов–термистов (1983, 1985, 1987, 1998, 2000, 2002, 2006, 2008 г.г.), конференции «Физика прочности и пластичности» (г. Самара, 1983, 1986, 1992 г.г.), IV Европейской конференции по лазерной обработке материалов «ECLAT-92» (г. Геттинген, Германия, 1992 г.), Международном симпозиуме по мартенситным превращениям ICOMAT-95 (г. Лозанна, Швейцария), Международном семинаре «Современные проблемы прочности» (г. Старая Русса - В. Новгород, 1997, 1999, 2003 г.г.), Мемориальном симпозиуме академика В.Н. Гриднева «Металлы и сплавы: Фазовые превращения, структура, свойства» (г. Киев, 1998 г.), Международной конференции KUMIKOM-99 (г. Москва, 1999 г.), LXII Международной конференции «Актуальные проблемы прочности» (г. Калуга, 2004 г.), Международной конференции «Взаимодействие дефектов и неупругие явления в твердых телах» (г. Тула, 1997, 2001 г.), Международной конференции «Релаксационные явления в твердых телах» (г. Воронеж, 1999 г.), Российско-китайском симпозиуме «Аdvanced materials and processes» (г. Калуга, 1995 г.), Международном симпозиуме «Фазовые превращения в твердых растворах и сплавах» (г. Сочи, 2002, 2003, 2005 г.г.), ХIV Петербургских чтениях по проблемам прочности (г. С.-Петербург, 2003 г.), Бернштейновских чтениях по термомеханической обработке металлических материалов (г. Москва, 1996, 1999, 2004 г.), Х Международном семинаре «Дислокационная структура и механические свойства металлов и сплавов ДСМСМС-2005» (г. Екатеринбург, 2005 г.)

Публикации

По результатам проведенных исследований опубликовано 36 печатных работ в рецензируемых журналах, определенных Перечнем ВАК, часть материалов вошли в 3 монографии.

Объем работы

Диссертация состоит из введения, четырех глав и общих выводов. Работа изложена на 286 страницах, включая 89 рисунков, 22 таблицы и 3 приложения (акты внедрения). Список использованной литературы содержит 220 наименований.

СОДЕРЖАНИЕ ДИССЕРТАЦИОННОЙ РАБОТЫ

В работе исследованы углеродистые и легированные, конструкционные, в том числе свариваемые, и инструментальные стали с различным содержанием углерода от 0,03 до 1,5 мас.%.

В первой главе рассмотрены особенности фазовых и структурных превращений при лазерной обработке сталей с различными исходными структурами. Изучено явление структурной наследственности при сверхбыстром лазерном нагреве. Рассмотрены закономерности перекристаллизации сталей при лазерном нагреве, влияние предварительного отпуска и деформации на формирование зеренной структуры, определен механизм зарождения аустенита в сталях, имеющих различную исходную структуру. Таким образом, в настоящей работе лазерное воздействие было использовано как способ изучения превращений в сталях, происходящих при нагреве. Лазерная обработка со свойственными ей высокими скоростями нагрева и охлаждения, несомненно, является хорошим средством для исследования превращений при нагреве и, в частности, перекристаллизации, так как позволяет не только быстро нагревать и получать зону градиентного нагрева, но и фиксировать мгновенно высокотемпературное состояние.

Лазерная поверхностная обработка осуществлялась с оплавлением поверхности, главным предметом изучения являлась ЗТВ, где температура превышала критические точки Ас1- Ас3, но была меньше, чем температура плавления. При лазерной обработке предварительно отожженных сталей главной особенностью структуры является сохранение химической неоднородности, связанной с недостатком времени для полного протекания диффузионных процессов. В образце армко-железа при лазерном нагреве выше температуры Ас1 около цементитных частиц происходит локальный переход в аустенитное состояние и образование мартенсита или даже ледебурита на их месте при охлаждении, так как из-за малой продолжительности лазерного нагрева не хватило времени для выравнивания углерода по всему объему. В стали 20 с исходной феррито-перлитной структурой вплоть до температуры плавления сохраняется химическая неоднородность, связанная с недостатком времени для диффузии между аустенитом, образовавшимся на месте перлитных участков и аустенитом, образовавшимся на месте феррита, что видно по графику микротвердости (рис. 1).

Можно заключить, что лазерный нагрев сталей с резко дифференцированными структурными составляющими (феррит+цементит, феррит+перлит) в исходном состоянии не позволяет получить однородную конечную структуру. Второе заключение: при сверхбыстром лазерном нагреве возрастает вероятность протекания бездиффузионных превращений.

При лазерном нагреве предварительно закаленных конструкционных сталей резко проявляется структурная наследственность. В начале зоны лазерной закалки воспроизводится крупное зерно исходной структуры, по мере повышения температуры, восстановленное зерно заменяется новым, более мелким, образующимся в результате рекристаллизации аустенита, обусловленной фазовым наклепом (рис. 2). При сверхбыстром лазерном нагреве стали рекристаллизация аустенита полностью подавляется. Казалось бы, сверхбыстрый нагрев без выдержки с немедленным охлаждением должен приводить к образованию супермелкозернистого аустенита. Но проявляется эффект структурной наследственности, при котором эффект измельчения зерна, связанный с перекристаллизацией, отсутствует. Это явление специфично для лазерной обработки предварительно закаленных крупнозернистых сталей и связано с необычно высокой скоростью нагрева.

Подкладкой для кристаллизации расплава может служить рекристаллизованный аустенит. В том случае, когда при сверхбыстром лазерном нагреве рекристаллизация от фазового наклепа оказывается подавленной, подкладкой служит восстановленный аустенит, крупнозернистый, если в исходном состоянии сталь была крупнозернистой.

Влияние отпуска на перекристаллизацию закаленной стали. Известно, что отпуск закаленной стали может препятствовать восстановлению зерна при последующем быстром нагреве. Нарушение структурной наследственности в отпущенной стали связывают: с процессами полигонизации и рекристаллизации -фазы, развитием неупорядоченного превращения на границе феррит-карбид, устранением влияния остаточного аустенита как «подложки», с протеканием превращения, идущего с размножением ориентировок.

В данной работе показано, что при лазерном нагреве закаленных сталей, например, стали 38ХН3МФ рекристаллизация аустенита полностью отсутствует (рис. 3 а). Отпуск 300-500°С приводит к наличию в начале зоны лазерной закалки восстановления исходного аустенитного зерна, ближе к переплавленной зоне возникает полоска мелкозернистой рекристаллизованной структуры (рис. 3 б).

С повышением температуры отпуска температура начала рекристаллизации снижается, приближаясь к интервалу -превращения. Таким образом, предварительный отпуск способствует рекристаллизации восстановленного аустенита.

а б

Рис. 3. Влияние отпуска на структуру зоны воздействия лазерного излучения в стали 38ХН3МФ: а – без отпуска, б – отпуск 500°С.

Можно заключить, что мелкое зерно, возникающее в высокоотпущенной стали, не является непосредственным следствием -превращения, а образуется в результате спустившейся в интервал превращения рекристаллизации. Рассмотрение перекристаллизации как рекристаллизации, накладывающейся на упорядоченное превращение, потребовало проведения электронно-микроскопических наблюдений за формой и локализацией зародышей аустенита.

В предварительно закаленной стали в зоне, нагревавшейся выше Ас1, на границах реек формируются вытянутые вдоль пластин фазы зародыши аустенита линзовидной формы (рис. 4 а, б).

Ориентация всех зародышей -фазы в пределах первоначального зерна одна и та же. После разрастания до полного их соприкосновения происходит восстановление исходного аустенитного зерна. Такой механизм образования аустенита является «механизмом восстановления». Таким образом, -превращение в стали с исходной реечной структурой мартенсита осуществляется путем зарождения и роста отдельных зародышей. Не происходит «опрокидывания» отдельной мартенситной рейки как целой в аустенит, как это происходит в сплавах с памятью формы.

Показано, что остаточный аустенит, имеющийся в структуре закаленной стали, не играет определяющей роли в явлении восстановления аустенитного зерна при лазерном нагреве – сталь со структурой мартенсита без остаточного аустенита также оказывается склонной к структурной наследственности.

а б

в г

Рис. 4. Места образования зародышей аустенита в закаленной (а, б) и в высокоотпущенной (в, г) стали 20ХГСНМ при лазерном нагреве: а, в – светлопольные изображения, б, г – темнопольные изображения в рефлексе (200) аустенита.

Такой же «механизм восстановления» наблюдали и при лазерном нагреве закаленных и отпущенных сталей (рис. 4 в, г). До сих пор считалось, что центры неупорядоченного превращения возникают на границах феррит-карбид. В данной работе установлено, что присутствие в высокоотпущенной стали карбидов, когерентно не связанных с -фазой, и расположение их внутри или на границах реек не приводит к нарушению ориентированного зарождения аустенита. Дальнейшее повышение температуры нагрева, соответствующей середине межкритического интервала, приводит к появлению участков аустенита неправильной или часто глобулярной формы, что можно трактовать как рекристаллизацию аустенита в ходе - превращения.

Показано, что в закаленной и в высокоотпущенной стали аустенит образуется по «механизму восстановления», но в случае нагрева высокоотпущенной стали формируется мелкое зерно - результат двухстадийной схемы перекристаллизации, включающей фазовое превращение и рекристаллизацию, прошедшую в интервале превращения. Применение сверхбыстрого лазерного нагрева позволило оторвать рекристаллизацию аустенита от - превращения и наблюдать образование аустенита по «механизму восстановления».

Влияние деформации на перекристаллизацию закаленной стали. Считается, что при пластической деформации закаленной стали эффект восстановления исходной структуры подавляется, так как возникают «внутрифазные поверхности раздела», или разрушается внутризеренная текстура. В данной работе показано, что пластическая деформация действует на второй этап перекристаллизации - рекристаллизацию аустенита: при этом смещается ее начало в область более низких температур и измельчается зерно, получающееся в результате рекристаллизации (рис. 5). Мелкое зерно, получающееся при нагреве закаленной и деформированной более чем на 25 % стали есть результат рекристаллизации от внутреннего наклепа, спустившейся в интервал - превращения.

а б

Рис. 5. Структура зоны лазерной закалки в стали 38ХН3МФ, предварительно закаленной от 1200°С и деформированной прокаткой: а – на 5%, б – на 25%.

Предварительная деформация повышает стимул к рекристаллизации аустенита, внося дополнительные дефекты в мартенсит, которые передаются аустениту. Перекристаллизация закаленной и деформированной стали также состоит из двух этапов: упорядоченной перестройки решетки насыщенного дефектами мартенсита в аустенит, наследующий частично эти дефекты, и рекристаллизации аустенита, которая в зависимости от условий либо накладывается на - превращение, либо отрывается от него.

Во второй главе рассмотрены причины повышенной твердости конструкционных сталей, подвергнутых лазерной закалке. После лазерной закалки, характеризующейся сверхвысокими скоростями охлаждения, среднелегированные конструкционные стали приобретают повышенную твердость по сравнению с твердостью после обычной закалки. В литературе повышенную твердость связывают с мелкокристаллическим состоянием мартенсита, увеличением плотности дефектов, получением структуры с вкрапленными карбидами, ограничением самоотпуска мартенсита при сверхбыстром охлаждении. Нами показано, что по структуре мартенсит лазерной закалки ничем не отличается от образующегося при обычной закалке. Эксперименты по влиянию скорости охлаждения при лазерной закалке (применяли подогрев образцов) на величину получаемой твердости показали, что основной причиной повышения твердости при лазерной закалке является резкое ограничение самоотпуска мартенсита.

Разработан способ получения равномерной твердости на облучаемой поверхности, защищенный авторским свидетельством № 995518 и рекомендованный для обработки поверхности инструмента и деталей, работающих в условиях высоких контактных нагрузок и подверженных износу. Способ позволяет избежать неравномерной твердости на облученной поверхности в связи с появлением участков отпущенной структуры.

Рассмотрено упрочнение мартенситностареющих сталей после лазерной обработки. Лазерная обработка таких сталей в состаренном состоянии приводит к закономерному снижению твердости в зоне лазерной закалки. Старение закаленной лазером стали вызывает существенное упрочнение зоны лазерной закалки, причем твердость после лазерной закалки и последующего старения при всех температурах существенно выше, чем после объемной закалки и старения. Лазерная закалка мартенситностареющих сталей с последующим старением приводит к получению более высокой твердости на поверхности, чем после обычной закалки и старения. Несколько сдвигается и максимум твердости на кривой зависимости от температуры старения. На основании структурных исследований установлены причины повышенной твердости. Показано, что лазерная закалка не приводит к полному растворению крупных частиц -фазы типа Fе–Сг–Мо, обеспечивает большую степень пересыщения мартенсита при сверхбыстром охлаждении и создает большую плотность дислокаций, являющихся в дальнейшем местами предпочтительного зарождения упрочняющей фазы. Последующее старение при температуре 470°С, обеспечивающее максимальное упрочнение закаленной лазером стали, вызывает выделение частиц упрочняющей фазы Ni3Тi в дисперсной форме, близкой к предвыделениям. При лазерном нагреве не происходит полной гомогенизации аустенита, на месте бывших частиц сохраняется повышенная концентрация никеля и титана. Это обстоятельство облегчает последующее образование частиц Ni3Ti при старении, которое начинается при более низкой температуре и проходит быстрее. Предложена обработка, позволяющая при неизменных свойствах металла сердцевины изделия из мартенситностареющей стали, обработанной по оптимальным режимам, получить более высокую твердость поверхностного слоя.

В третьей главе, посвященной совершенствованию структуры свариваемых сталей, рассмотрены фазовые и структурные превращения, происходящие в неравновесных условиях сварки, особенности перекристаллизации легированных сталей при сварочном нагреве (в зоне термического влияния), при термообработке сварных соединений из легированных сталей, а также формирование структуры при термомеханической обработке свариваемых сталей.

Pages:     | 1 || 3 | 4 |   ...   | 5 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»