WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     || 2 | 3 | 4 | 5 |

На правах рукописи

ТАБАТЧИКОВА Татьяна Иннокентьевна

ПЕРЕКРИСТАЛЛИЗАЦИЯ, ФАЗОВЫЕ И

СТРУКТУРНЫЕ ПРЕВРАЩЕНИЯ В СТАЛЯХ

В НЕРАВНОВЕСНЫХ УСЛОВИЯХ

Специальность: 05.16.01 – металловедение

и термическая обработка металлов

Автореферат

диссертации на соискание ученой степени

доктора технических наук

Челябинск– 2008

Работа выполнена в Ордена Трудового Красного Знамени Институте физики металлов УрО РАН

Научный консультант академик РАН, доктор технических наук

Счастливцев

Вадим Михайлович

ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ: доктор технических наук,

профессор Кудря Александр Викторович

доктор технических наук,

профессор Гервасьев Михаил Антонович

доктор физ.-мат. наук,

профессор Рущиц Сергей Вадимович

ВЕДУЩАЯ ОРГАНИЗАЦИЯ – Магнитогорский

государственный

технический университет

Защита состоится 17 сентября 2008 г.

в 11 часов на заседании диссертационного совета

Д 212.298.01 при Южно-Уральском государственном университете по адресу: 454080, г. Челябинск,

пр. им. В.И. Ленина, 76.

С диссертацией можно ознакомиться в библиотеке ЮУрГУ.

Автореферат разослан ____________2008 г.

Ученый секретарь диссертационного совета

доктор физико-математических наук

____________ Д.А. Мирзаев

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Получение высоких прочностных свойств в сталях достигается проведением термообработки, заключающейся в проведении операций, связанных с нагревом, охлаждением, деформацией в различных сочетаниях и последовательности, часто с получением неравновесных состояний. Существует множество вариантов получения неравновесных состояний: за счет быстрого нагрева, быстрого охлаждения, внесения в материал дефектов кристаллического строения путем деформации и т.п. В данной работе были выбраны для исследования следующие направления: лазерная поверхностная обработка, сопровождающаяся сверхбыстрым нагревом и охлаждением; сварка с быстрым нагревом и ускоренным охлаждением; термомеханическая обработка, заключающаяся в сочетании горячей деформации аустенита и - превращения при ускоренном охлаждении; наконец, перлитное превращение, происходящее при значительном переохлаждении ниже Ас1 (наименьших возможных температурах перлитного распада).

В связи с появлением высококонцентрированных источников энергии (лазер, электронный луч и т.д.) со свойственными им сверхвысокими скоростями нагрева и охлаждения возникла необходимость в изучении перекристаллизации в неравновесных условиях, а именно при сверхбыстром нагреве. Изучение процесса перекристаллизации является важным и актуальным не только в научном, но и в практическом аспекте, поскольку механические свойства сталей непосредственно зависят от размеров зерна. Существуют представления о том, что при лазерной закалке всегда формируется мелкокристаллическая структура. Несомненно, что быстрый лазерный нагрев должен подавлять диффузионные процессы и стимулировать сдвиговый механизм образования -фазы. Поэтому эффекты структурной наследственности в условиях лазерного нагрева могут проявляться особенно ярко.

В работах В.Д. Садовского с соавторами при относительно невысоких скоростях нагрева были изучены закономерности перекристаллизации, однако причины проявления или исключения структурной наследственности не были выяснены. Применение сверхбыстрого лазерного нагрева для изучения перекристаллизации явилось хорошим способом изучения структурной наследственности, поскольку в максимальной степени могло подавить рекристаллизацию аустенита от фазового наклепа и осуществить бездиффузионное - превращение при нагреве.

Подобные проблемы возникают и при сварке в процессе перекристаллизации металла в зоне термического влияния (ЗТВ). Перекристаллизация металла зоны термического влияния в процессе сварочного нагрева (при лазерной или электродуговой сварке) изучена явно недостаточно. Между тем, именно структура металла околошовной зоны во многом определяет механические свойства сварного соединения в целом. Перегрев околошовной зоны сварного соединения, вызывающий рост аустенитного зерна, приводит к значительным осложнениям при проведении последующей термообработки, что также может быть связано с проявлением структурной наследственности и развитием интеркристаллитной хрупкости. В связи с этим было необходимо изучить перекристаллизацию в применении к сварным соединениям низкоуглеродистых сталей, которые в настоящее время составляют основную долю производимых свариваемых сталей. Необходимо разработать режимы термообработки, исключающие восстановление крупного зерна аустенита при нагреве.

К новым методам упрочнения трубных, строительных сталей в настоящее время относится термомеханическая обработка (ТМО), которая была разработана еще в 50- е годы под руководством В.Д. Садовского. Однако возникает вопрос, возможно ли использование ТМО для упрочнения низкоуглеродистых низколегированных сталей, в которых при охлаждении после высокотемпературной деформации не происходит мартенситного превращения, а образуются феррито-перлитная либо феррито-бейнитная структуры.

До сих пор считалось, что перлит является наиболее стабильной фазой, по сравнению с мартенситом и бейнитом. Исследования последних лет, в частности работы В.М. Счастливцева с соавторами показывают, что перлит, полученный при наиболее низких температурах, является неравновесной структурой. При кратковременном докритическом отжиге такого перлита интенсивно протекают превращения, не связанные с процессами сфероидизации и коагуляции цементита, однако сопровождающиеся существенными изменениями прочностных свойств. Это обстоятельство стимулировало наши исследования кристаллической структуры цементита методом ЯГР и методом протяженных тонких структур спектров энергетических потерь электронов – EEFLS, а также изучение содержания углерода в ферритной составляющей перлита методом внутреннего трения.

В работах Л.Г. Коршунова, А.В. Макарова показано, что износостойкость сталей зависит от содержания углерода в твердом -растворе. Избыточное содержание углерода в феррите перлита должно было повлиять на интенсивность изнашивания тонкопластинчатого перлита, что вызвало необходимость изучения влияния структуры перлита на уровень износостойкости эвтектоидных сталей.

Тонкопластинчатый перлит, образующий при ускоренном охлаждении массивных изделий (рельсов, железнодорожных колес) представляет собой наноструктуру – межпластиночное расстояние в перлитных колониях составляет около 80-60 нм, а толщина цементитной пластины 7-8 нм. Поведение такой структуры при деформации представляет не только научный, но и практический интерес. Из работ В.Г. Гаврилюка известно, что при пластической деформации возможно растворение цементита и выход углерода в -твердый раствор. Необходимо было исследовать возможное растворение цементита при деформации перлита, полученного в неравновесных условиях (квазиэвтектоида), сравнив его поведение с перлитом, полученным в равновесных условиях.

Таким образом, в диссертации большое внимание нужно было уделить рассмотрению тех особенностей превращений, которые связаны с неравновесными условиями, создаваемыми при быстром нагреве или быстром охлаждении, со значительным переохлаждением относительно температур фазового равновесия, а также с созданием дефектов кристаллического строения в металлическом материале при пластической деформации.

Приведенный краткий обзор проблем, касающихся механизмов перекристаллизации, фазовых и структурных превращений в сталях, происходящих в неравновесных условиях, показывает актуальность настоящей работы

Цель настоящей работы состоит в установлении особенностей перекристаллизации, фазовых и структурных превращений в сталях в неравновесных условиях, возникающих при сверхбыстром (или быстром) нагреве, свойственном лазерному воздействию или сварке, а также при перлитном распаде, осуществленном при ускоренном охлаждении и наименьшей возможной температуре.

Для достижения намеченной цели в работе были решены следующие задачи, имеющие методическое, научное и практическое значение:

1. Исследована перекристаллизация легированных сталей при сверхбыстром лазерном нагреве. Установлено влияние отпуска и пластической деформации на перекристаллизацию предварительно закаленной стали. Определен механизм образования аустенита в сталях при сверхбыстром лазерном нагреве.

2. Установлены структурные особенности мартенсита, связанные со сверхбыстрой лазерной закалкой, и причины его повышенной твердости. Определен способ получения равномерного закаленного слоя на поверхности стальных изделий, подвергнутых лазерной поверхностной обработке.

3. Исследованы перекристаллизация, фазовые и структурные превращения в сталях, происходящие при лазерной и электродуговой сварке с целью создания оптимальной структуры в околошовной зоне.

4. Разработаны способы перекристаллизации крупнозернистой структуры, возникшей при перегреве в процессе сварки сталей, обладающих повышенной склонностью к интеркристаллитному разрушению.

5. Исследована перекристаллизация низкоуглеродистых низколегированных свариваемых сталей при термомеханической обработке. Установлена возможность передачи дефектов кристаллического строения от деформированного аустенита образующейся из него при ускоренном охлаждении ферритной, бейнитной или мартенситной структуре.

6. Определены кристаллографические особенности процесса образования аустенита при сверхбыстром лазерном нагреве стали с исходной перлитной структурой и установлена возможность реализации бездиффузионного – превращения.

7. Определены изменения кристаллической структуры цементита при длительном отжиге в -состоянии.

8. Исследованы особенности структуры перлита, образующегося при наименьшей возможной температуре перлитного распада, в частности, установлены причины его повышенной твердости.

9. Исследована износостойкость и поведение при пластической деформации тонкопластинчатого перлита – основной структурной составляющей рельсовых и колесных сталей.

При решении поставленных задач получены новые научные результаты, которые выносятся на защиту:

1. Установлено, что при лазерном нагреве -превращение в сталях с исходной структурой реечного мартенсита происходит не на карбидных частицах, а путем зарождения и роста зародышей на границах - реек, ориентационно связанных с исходной структурой, что приводит к восстановлению первоначального аустенитного зерна. При лазерном нагреве перекристаллизация в сталях с исходной структурой реечного мартенсита состоит из двух этапов: упорядоченной перестройки и рекристаллизации фазонаклепанного аустенита. Отпуск и деформация закаленной стали не приводят к нарушению упорядоченности -превращения, а влияют на второй этап перекристаллизации – рекристаллизацию аустенита, вызывая понижение температуры ее начала к интервалу -превращения. При сверхбыстром лазерном нагреве рекристаллизация аустенита может быть подавлена.

2. Экспериментально обнаружено, что при лазерном нагреве стали с исходной перлитной структурой образование аустенита может происходить путем бездиффузионного сдвигового мартенситоподобного превращения.

3. Обнаружено, что в ферритной составляющей «свежего» тонкопластинчатого перлита присутствует повышенное, по сравнению с равновесным, содержание углерода в виде атмосфер на дислокациях. Повышенная прочность и износостойкость сталей со структурой тонкопластинчатого перлита определяется не только его дисперсным строением (нанофазным строением цементита), но и повышенным содержанием углерода в феррите перлита и повышенной способностью цементита к растворению при деформации.

4. Экспериментально обнаружено, что кристаллическая структура цементита тонкопластинчатого перлита, а именно его углеродная подрешетка, изменяется после длительного отжига в -состоянии; кристаллическая решетка цементита не соответствует решетке Рnma, а имеет более низкую симметрию.

5. Установлено, что при ТМО низкоуглеродистых низколегированных промышленных сталей происходит передача дефектов кристаллического строения от деформированного и нерекристаллизованного аустенита не только мартенситу, но и конечной бейнитной или феррито-бейнитной структуре.

Практическая значимость работы. Установленные в работе закономерности перекристаллизации использованы при разработке режимов двухдуговой сварки, а также режимов термической обработки сварных соединений из высокопрочных сталей. На основании анализа фазовых и структурных превращений определены оптимальные режимы термомеханической обработки низкоуглеродистых низколегированных свариваемых сталей. Предложен способ поверхностной закалки, защищенный авторским свидетельством № 995518.

Личный вклад соискателя состоит в инициативе проведения исследований, постановке задач исследования, обработке и трактовке полученных результатов. Все этапы экспериментальной работы проведены лично соискателем или при его активном участии. Особая признательность – академику В.М. Счастливцеву за постоянную поддержку и внимание.

Апробация работы

Pages:     || 2 | 3 | 4 | 5 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»