WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 7 |

Волновые уравнения, описывающие распространение поперечного звука в такой модели, представляют собой весьма сложные дифференциальные уравнения с зависящими от координат коэффициентами. При этом, в отличие от базисноизотропного случая, никакими преобразованиями координат разделить переменные и получить независимые уравнения для мод не удается. Магнитная и немагнитная моды в кристалле в базисноанизотропной модели оказываются «перепутанными». Решить систему волновых уравнений можно численно, заменив приближенно плавное изменение анизотропии g(z) дискретным. Если представить кристалл разделенным на n тонких слоев, параллельных базисной плоскости, с постоянной внутри каждого слоя анизотропией (и, следовательно, однородной намагниченностью в слое), то это приведет к существенному упрощению уравнений. Поворот системы координат xyz вокруг тригональной оси 3z || z на определенный для каждого слоя угол позволяет получить независимые уравнения для двух мод звуковой волны в соответствующем слое. В новой системе координат rqz эти уравнения для магнитной и немагнитной моды в слое запишутся так:

(12)

Здесь q и r – направления поляризаций магнитной и немагнитной моды в слое;

, (13)

где – угол между ЛАО и Н (рис.9).

Важно отметить, что системы координат rqz, обеспечивающие разделение звуковой волны на магнитную и немагнитную моды, в различных слоях не совпадают: поворот системы rqz относительно xyz вокруг общей оси z осуществляется на свой для каждого слоя угол (см. рис.9). Именно поэтому не удается произвести единое для всех точек кристалла преобразование координат, которое позволило бы получить независимые волновые уравнения для рассматриваемых мод. Еще одно отличие от базисноизотропной модели состоит в том, что ориентации осей r и q изменяются, также, с полем. Все это делает задачу вычисления амплитуды вышедшей из кристалла волны гораздо более сложной, чем в базисноизотропном случае.

Для расчета амплитуды звуковой волны удобно применить известный из оптики метод матриц Джонса. Если кристалл разделен на n упомянутых слоев, то связь между входящей и выходящей из m-го слоя волной такова:

. (14)

Здесь матрица Тm определяется выражением

, (15)

где m = 2(m m-1) – угол поворота оси r при переходе от слоя m 1 к слою m.

Применяя (14) последовательно ко всем n слоям, находим связь между входящей в кристалл и выходящей из него волной:

. (16)

Расчет полевой зависимости амплитуды А(Н) компоненты волны (16) с оптимизацией параметров привел к кривой (рис. 7г), хорошо согласующейся с экспериментальной, полученной после фильтрации высокочастотной компоненты сигнала (рис. 7б). Тонкая же структура экспериментальной кривой (рис. 7а), по-прежнему, остается без объяснения.

Период ОГТ расчетной кривой А(Н) в базисноанизотропином случае гораздо больший, чем в базисноизотропном (ср. рис. 7г и 7в). Это объясняется уменьшением величины |Са| (ср. рис.8, кривые б и а) за счет появления в знаменателе выражения (13) слагаемого с обменно-усиленной константой анизотропии.

Пятая глава посвящена теоретическому исследованию природы тонкой структуры кривых А(Н) (рис.7а и 10а). Тонкая структура не является шумом, поскольку остановка протяжки магнитного поля сопровождается ее исчезновением, а повторные записи А(Н) коррелируют между собой.

Анализ показал, что в качестве основного механизма малопериодных осцилляций можно рассмотреть отражения звуковой волны от границ кристаллических блоков реального кристалла FeBO3 (п.п. 5.1, 5.2). Блоки представляют собой монокристаллические относительно совершенные области. Границы блоков обладают большим коэффициентом отражения, поэтому волна, попавшая внутрь блока, будет проходить его толщину многократно, отражаясь от границ и выходя наружу порциями. В этом случае на выходе из кристалла должна наблюдаться суперпозиция акустических волн, испытавших разное число переотражений, сдвинутых по фазе и убывающих по амплитуде. По сути, речь здесь идет об одновременном проявлении двух эффектов – ДП и акустического эффекта Фабри-Перо (размерного резонанса).

Для расчета амплитуды акустической волны на выходе из кристалла в этом случае рассмотрим прохождение волны в части кристалла, содержащей блок (п. 5.1). Будем исходить из базисноанизотропной модели. Снова воспользуемся методом матриц Джонса. Представим кристалл состоящим из n слоев с постоянной внутри каждого слоя анизотропией. При этом в качестве одного из таких слоев возьмем внутренний блок. Для простоты расчетов будем полагать, что индуцированная анизотропия в блоке отсутствует (хотя для интерпретации тонкой структуры величина анизотропии в блоке принципиального значения не имеет). Толщина блока dB велика по сравнению с толщинами других слоев. На выходе из кристалла для волны, N-кратно прошедшей внутренний блок имеем

. (17)

Для внутреннего блока матрица Джонса имеет следующий вид:

. (18)

Здесь kBr = kBr(H) – волновой вектор магнитной моды акустической волны в блоке; – угол поворота локальной системы координат при переходе от блока к граничащим с ним слоям.

Лучшего согласия с экспериментом удается достичь, если рассмотреть не один, а несколько блоков различной толщины (п. 5.2). Такая ситуация, по всей видимости, и более реалистична. В этом случае волна на выходе из кристалла будет представлять собой суперпозицию волн (5.1), проходящих в различных блоках. Решение такой задачи с учетом трех блоков привело к кривым А(Н) с тонкой структурой (рис. 7д и 10б), коррелируюшими с экспериментом (рис.7а и 10а).

Эксперименты показывают, что в слабых полях тонкая структура последовательно записанных кривых А||(Н) не воспроизводится точно (рис. 10а). Интерпретировать этот факт удается в предположении, что в процессе намагничивания и монодоменизации образца в нем вблизи дефектов остаются области, намагничивание которых носит характер скачков Баркгаузена со свойственной этому эффекту неполной воспроизводимостью результатов (п. 5.4). Эффективно скачки Баркгаузена в рассматриваемом случае можно смоделировать, задавая в придефектных областях небольшие случайные вариации магнитной анизотропии в процессе намагничивания кристалла. На рис. 10в приведены рассчитанные с учетом таких вариаций не совпадающие кривые А||(Н). В качестве придефектных областей рассмотрены приповерхностные слои толщиной 0,015d.

В шестой главе теоретически исследована частотная зависимость амплитуды поперечной звуковой волны А() в борате железа. На рис. 11а приведена экспериментальная кривая А||() (АЧХ), полученная в тех же условиях, в которых регистрировалась зависимость А||(Н) (см. п. 4.2). Звуковая волна распространялась вдоль оси 3z кристалла. Частотный диапазон составлял 160-200 МГц. Экспериментальная кривая А||() обладает тонкой структурой.

Расчет зависимости А||() в рамках развитой теории магнитного ДП звука в борате железа с учетом механических граничных условий и блочной структуры позволил получить кривую, обладающую тонкой структурой, которая, однако, в отличие от экспериментальной, является периодической. Дело в том, что при расчете зависимости А||() мы не рассматривали реальную полосу пропускания экспериментального устройства и взяли ее по существу неограниченной. Представим полосу пропускания в виде гауссовой кривой

. (19)

Расчетная кривая АЧХ должна быть произведением периодической кривой на полосу пропускания. Подбирая величины параметров 0 и 0 в (19), мы пришли к результату, представленному на рис. 11б. Видно, что полученная таким образом расчетная кривая АЧХ основные закономерности эксперимента отражает.

В седьмой главе построена теория акустического резонанса в неоднородно намагниченном кристалле FeBO3 и на ее основе интерпретирован эксперимент.

В п. 7.1 описаны эксперименты по возбуждению акустического резонанса в борате железа. В работе [18] исследовался акустический резонанс в свободно подвешенной тонкой базисной пластине FeBO3. Звук возбуждался радиочастотным магнитным полем, приложенным в плоскости образца. Обнаружена зависимость резонансной частоты звука rez от величины статического магнитного поля Н, также, приложенного в базисной плоскости. При этом речь шла только о резонансе первого порядка.

В работе [12] наблюдались акустические резонансы Фабри-Перо в тонкой высокосовершенной базисной пластине бората железа. Кристалл в виде естественно ограненного правильного шестиугольника с линейными размерами в плоскости базиса 4 мм и толщиной 141 мкм синтезирован нами методом раствор-расплавной кристаллизации. В этом случае ультрарзвук возбуждался, как и ранее (гл.4, 5, 6), пьезопреобразователями, укрепленными на естественных базисных гранях кристаллической пластины бората железа. В кристалле возникали поперечные акустические волны, распространяющиеся вдоль оси 3z. В эксперименте, проводимом при температуре 77К, регистрировалась компонента акустической волны с поляризацией, параллельной поляризации излучаемой. Многократные переотражения от границ кристалл-пьезопреобразователь в условиях размерного резонанса приводили к резонансному возрастанию амплитуды волны, регистрируемой пьезоприемником. При этом наблюдалось несколько ветвей rez(Н), соответствующих акустическим резонансам Фабри-Перо высоких порядков (рис.12, темные и светлые кружки). Все наблюдаемые резонансы можно условно разделить на две группы: в одной из них смещение при изменении магнитного поля (в области слабых полей) намного значительнее (светлые кружки), чем в другой (темные кружки). Моды акустической волны, порождающие сильно смещающиеся резонансы мы назвали сильномагнитными. При слабом смещении резонансов будем говорить о слабомагнитных модах.

П.п. 7.2-7.5 посвящены теоретическому анализу эффектов акустического резонанса в борате железа. В главе 6 установлено, что наблюдаемая в эксперименте тонкая структура кривой А||() для толстой базисной пластины FeBO3 связана с отражением звука от границ кристаллических блоков. Как следует из теории, период тонкой структуры должен расти с уменьшением толщины блоков. Акустические резонансы в тонкой высокосовершенной пластине бората железа, вызываемые переотражениями от поверхностей кристалла, по существу являются вырожденным случаем тонкой структуры.

Для анализа экспериментальных результатов [12] будем исходить из теории магнитного ДП звука в рамках базисноанизотропной модели (п.4.5). Поскольку кристаллическая пластина тонкая, можно предположить, что индуцированная в базисной плоскости кристалла одноосная магнитная анизотропия однородна (п. 7.2). В этом случае для резонансных частот магнитной и немагнитной моды получаем

, (20)

, (21)

где р – порядок резонанса.

Величина Са (13) в выражении (20) не зависит от координаты z. Рассматривая константу g в (13) как варьируемый параметр, можно добиться удовлетворительного согласия с экспериментом для сильномагнитных мод, особенно в области слабых полей (рис 12а, кривые). Однако, слабомагнитные моды, соответствующие слабо смещающимся при изменении магнитного поля резонансам, по-прежнему, описать не удается. В рамках этой модели остаются немагнитные резонансы (21), частота которых не зависит от поля (рис. 12а, прямые).

Откажемся от предположения об однородности базисной анизотропии в тонком образце: вернемся к базисноанизотропной модели с неоднородной по толщине кристалла анизотропией (см. п.4.5). Теперь при произвольной ориентации магнитного поля в базисной плоскости направления поляризации нормальных мод будут плавно изменяться вдоль оси z(||3z). Как и в случае толстого образца, это должно приводить к «перепутыванию» мод, точнее – их кпримешиванию друг к другу.

Таким образом, в неоднородном случае вместо чистых магнитных и немагнитных мод должны возникнуть гибридные, которые, видимо, и могут быть отождествлены с упомянутыми выше слабомагнитными и сильномагнитными модами. Соответствующие им резонансы должны по-разному смещаться с изменением магнитного поля. Однако получить аналитические выражения rez(H) в рамках такой модели не удается. Для расчета резонансных кривых rez(Н) в этом случае мы поступим по-другому.

Учет переотражений от поверхности бездефектного кристалла в условиях неоднородного распределения намагниченности (п. 7.3) приводит к обобщению выражения (16):

. (22)

Здесь N – количество прохождений; n – число кристаллических слоев; N – коэффициент пропускания после N-кратного прохождения. Поскольку матрицы Джонса Tm не коммутируют, то в произведении важно соблюдать необходимую последовательность сомножителей, которая задается очередностью достижения волной соответствующего слоя. Определяя частотную зависимость амплитуды А||() волны (22) для различных значений магнитного поля, мы получаем кривые, содержащие акустические резонансы А||(rez). Зависящие от магнитного поля резонансные частоты находятся из уравнений А||/ = 0. Численное решение такой задачи с оптимизацией параметров приводит к резонансным кривым rez(H), изображенным на рис.12б (сплошные линии). Мы получили две группы кривых, которые существенно отличаются от кривых для чистых мод, соответствующих случаю однородной базисной анизотропии. Подчеркнем, что радикальной трансформации подверглись не только резонансные кривые для немагнитных мод, но и для магнитных тоже. Это неожиданный результат, который, однако, коррелирует с экспериментом, но заставляет взглянуть на экспериментальные результаты несколько по-иному. Вдали от точки пересечения резонансных кривых для чистых мод (рис. 12б, пунктирные линии) трансформированные резонансные кривые практически совпадают с кривыми для чистых мод. Однако вблизи точки пересечения проявляются принципиальные различия. Величины rez/Н («скорости» смещения резонансов) становятся отличными от нуля для обеих кривых; возникает «взаимодействие» резонансов, проявляющееся в «отталкивании» резонансных кривых вместо их пересечения. С ростом магнитного поля кривая, определявшая квазимагнитные резонансы, начинает соответствовать квазинемагнитным и наоборот.

В области «взаимодействия» должна наблюдаться весьма существенная полевая зависимость амплитуд Аrez(H) резонансов (п. 7.4).

Восьмая глава посвящена исследованию влияния давления различной симметрии на магнитное состояние и ДП звука в ромбоэдрических антиферромагнетиках.

Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 7 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»