WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 |   ...   | 4 | 5 || 7 | 8 |
  • Имеется mi систем типа i, общее количество систем равно m: m = {mi, … , mn}, mL - минимальное количество систем каждого типа необходимых в СС
  • Каждый тип системы имеет набор i MOP: p = {pi,1, … , pi,i} , таким образом, каждый имеет размерность I и
  • Для каждой системы векторы MOP ограничены нижним и верхним порогами производительности заданными исходя из технологических ограничений. Эти ограничения образуют неравенство: или для всех j. Для таких параметров как, уровень ошибок меньшие значения соответствуют более высокому качеству (производительности) и это не просто нижняя граница,.
  • Стоимость каждого модуля системы является нелинейной функцией производительности, выраженной в терминах ее критических MOP:
    Обозначим как стоимость, ассоциированную с пороговыми значениями производительности. Данный параметр получается в предположении, что каждый частный MOP зависит от стоимости для конкретной системы. В таком случае общая стоимость СС будет определяться как.
  • СС имеет один обобщающий MOE, E, представляющий функцию от набора MOP каждой из систем и общего числа подсистем.

Из сделанных предположений, очевидно, что каждый тип систем имеет собственный обобщающий MOE, Ei. Для одиночной системы обобщающий MOE каждой системы рассматривается как функция ее собственных MOP pi. Но, если любой из Ei зависит не только от pi, но от каких либо компонентов pj, где ij, то это означает, что СС является взаимозависимой и MOE отдельных систем определяются как. В общем случае, Е будет более сложной функцией от полного набора MOP систем и MOE отдельных систем становятся малозначимыми для СС. Описывая СС включающую простые системы или используя упрощенные модели СС можно выразить E как функцию MOP в явном виде. Однако, сами MOP обычно зависят от концепций использования и функционирования СС, порой от окружения. В дополнение к рассмотренным ограничениям, накладываемым на MOP, принимаются во внимание ряд дополнительных ограничений:

  • Структурно-конструктивные ограничения. Они учитывают, сколько систем каждого типа могут объединяться в СС.
  • Ограничения эффективности подсистем. Минимальные уровни эффективности могут существовать для MOE каждой системы. Эти пороги легко ассоциируются с конкретными системами. Порогом MOE для каждой системы Si является для всех i. При минимизации стоимости в условиях ограничений производительности также имеется минимум ограничения общего MOE всей СС.
  • Ограничения стоимости. Когда возможно, ограничения стоимости применяются как для отдельных систем, так и для всей СС соответственно:.
  • В свою очередь, с также ограничена снизу из-за наличия минимального порога производительности: .
  • Когда эффективность СС не полностью выражается единственным MOE, можно ввести дополнительный (вторичный) показатель MOE, например как показатель качества с ограничением :.

Рассматривая проектирование или модернизацию СС с позиций CAIV, приходим к задаче нелинейного программирования, которая решается путем определения последовательности верхних границ стоимости, где - стоимость, обеспечивающая граничное состояние СС, определяемое набором параметров. Результирующая задача нелинейного программирования (с одним ограничением MOE) состоит в достижении максимума производительности СС при выполнении ограничивающих условий:,,,

Методика оптимизации СС-ИКС. Предлагаемая методика реализует процесс, позволяющий количественно оценить распределение требований к СС как функцию стоимости, что позволяет экспертам прикладной области и проектировщикам определить оптимальное назначение требований в соответствии с определенным MOE конкретной СС. В процессе оптимизационном СС семь (рис.13) основных шагов:

  1. Определить СС в целом – ее назначение, системы и их функциональность, «сценарии функционирования».
  2. Определить критические показатели MOP и MOE.

Рис.13. Процедура оптимизации СС

  1. Определить (задать) исходные граничные условия (ограничения) для СС.
  2. Сформулировать (построить) модель Ц/П (PBCM) для каждой системы СС путем параметризации цены как функции от одного ключевого MOP для каждой системы.
  3. Сформулировать, если возможно, в аналитической форме модель, определяющую влияние MOP систем на MOE систем и, в конечном счете, на MOE CC. Другая возможность - выбрать подходящую компьютерную модель, которая вычисляет и оценивает заданную целевую функцию и ограничения MOE как функцию MOP систем.
  4. Итерационно решить результирующую задачу нелинейной оптимизации с ограничениями, последовательно ослабляя общие стоимостные ограничения. Решение конкретной формулировки задачи с ограничениями дает оптимальный набор значений MOP, который представляет один набор параметров СС, относящийся к наиболее эффективному проекту СС. Набор решений обеспечит отображение эффективности СС- MOE (через производительности систем MOP) как функции стоимости (CAIV).
  5. Перенести результаты оптимизации в процесс принятия решений о целесообразности реализации/модерниза­ции СС.

Варианты подхода использовались для обеспечения С/П - анализа при разработке ТМ сети Ленинградской области и СЗФО РФ, а также проекта оказания ТМ услуг в области медицинского страхования.

Оптимизация внутрисистемного интерфейса. Цель раздела состоит в описании ИКС совокупностью количественно измеримых параметров, характеризующих взаимодействие раз­личных систем С-ИКС, формулировке и решении задач оптими­за­ции межсистемного интерфейса в ИКС. Такая «уз­кая» постановка правомерна для задач разви­тия существующих ТМ-ИКС, когда расши­рение требует интеграции новых компо­нен­тов прикладных систем на основе определен­ного набора телекоммуникационных услуг «наилучшим» образом соответствующих требованиям приложения. ИКС в целом можно рассматривать как совокупность взаимодействующих (рис. 12) телекоммуникационной (ТС) и пользовательской систем (ПС). Каждая из систем характеризуется набором параметров, как минимум один из которых отражает стоимость (Сi ,   i >1). Для общности рассматриваем не саму «техническую» систему (уже оптимизированную по внутри­сис­темным критериям), а множество услуг, предоставляемых службами компонентных систем ИКС. Такой подход правомерен, поскольку именно услуга представляет ценность для потребителя. Услуга, как «самостоятельное … предложение… различимое пользователем» (рек. Q.129, ITU) представляет вариант логического внутрисистемного интерфейса между ПС и ТС в составе ИКС или ИКС и пользователем. Она описывает для потребителя функциональные возможности системы и характеризуется рядом количественных характеристик и параметров, позволяющих потребителю различать варианты. Параметры, различны по типу и диапазонам значений, однако, без ущерба для целей исследования могут быть представлены целыми числами. Весь набор характеристик описывается как векторная величина , где m – число характеристик, xi – значение характеристики с номером «i», i=1,2,…, m. В силу технологических, эксплуатационных и другие ограничений, ИКС может обеспечить только дискретный набор услуг. Этот «предлагаемый» набор обозначим. Пусть потребителя интересует получение «требуемых» услуг, которые описываются как множество векторов. В качестве характеристики отклонения требуемой услуги от предоставляемой, введем величину, где - требуемая услуга, - предоставляемая, - вес, определяющий «важность» i-й характеристики услуги для потребителя. Параметр, называемый «профилем пользователя», характеризует заинтересованность потребителя в структуре ИКУ и, во-первых, классифицирует потребителей, служа базисом для определения загруженности служб; во-вторых, позволяет потребителю стандартизовать требования. На различных этапах проектирования представляют интерес различные постановки задачи оптимизации ИКУ.

Оптимизация «Наиболее приемлемая услуга». Ищется, который достига­ется при (значений может быть несколько). Тем самым, получена пара, причем услуга наиболее приемлема для требования.

Оптимизация с ограничениями. Во многих случаях характеристики требуемой услуги не могут выходить за некоторые пределы. Пусть, где - предельные значения характеристики. Тогда ищется при условии:. Допустим, минимум достигается при (значений может быть несколько), следовательно, в полученной паре услуга наиболее приемлема для требования при заданных ограничениях.

Оптимизация с «минимумом стоимости». Допустим, из всего набора К характеристик являются стоимостными. Для потребителя естественно желание получить приемлемую услугу при минимуме общей стоимости или каких-то компонент стоимости (абонентской платы и эксплуатационных расходов). Суммарная стоимость:

где. В общем случае. Тогда ищется при условии

минимума или.

Приведенные характеристики сгруппируем, и обозначим как в выражении. Детализируя, и выделяя подгруппу из в которой объединены характеристики, отвечающие за эксплуатационные расходы, можно решать задачу проектирования ИКС наиболее экономичной в эксплуатации. В этом случае ищется при условии минимума

или.

Оптимизация с «минимумом стоимости» наиболее полезна при проектировании социально ориентированных некоммерческих ИКС (здравоохранение, образование, государственное или местное управление) в отличие от коммерческих ИКС.

Оптимизация с максимумом эффективности. Пусть, n из набора ()
- характеристики эффективности. Общую эффективность определим, как.
В этом случае ищется при условии максимума.

Методы оптимизации. Рассматриваемые задачи оптимизации являются целочисленными, с явно заданными ограничениями на значения параметров, размернос­ти не превышают сотни. Выбор услуги с оптимальным набором параметров выполняется прямым перебором множеств и с вычислением, где определяется методом экспертных оценок. Описанные методы оптимизации ИКС использовались при реализации ТМ сети Санкт-Петербурга.

Выводы по 4 главе

1. Сформулирована задача оптимизации С-ИКС, предложен метод и получено общее решение, справедливое для различных прикладных ИКС, в первую очередь сложных ТМ-ИКС. Достоинством и характерной чертой метода является то, что стоимостные оценки появляются не в итоге проектирования, а вовлечены в процесс оптимизации с начального этапа и выступают системообразующим параметром.

2. Методика продуктивна для обоснования инвестиций в развитие ИКС для здравоохране­ния, образования и других социально ориентированных областей. Решение задачи требует исходных данных о параметрах прикладной области

3. Сформулированы критерии и решена задача оптимального выбора комплекса услуг в телекоммуникационной подсистеме 2-компонентной ИКС на основе количественной оценки параметров услуги.

Пятая глава. Анализ и методы описания прикладной области.

Между абстрактными моделями ИКС и их реализациями лежит промежуточная область, специфицирующая прикладные процессы отрасли и использующая понятие «бизнес-процес­са» (БП). Задача состоит в формализации метода описания, обеспечивающего выявление действий БП, требующих телекоммуникационных услуг. БП, связанные с диагностическими, лечебными и другими специфическими процессами обслуживания пациента обозначим как медицинские БП (МБП). Отправ­ной точкой описания прикладной области являются медицинские протоколы (МП), которые, регламентируя деятельность медперсонала, высту­пают вербаль­ными описаниями МБП и создают процедурно-алгоритмический базис телеме­ди­цины.

Процедура анализа прикладной области ТМ-ИКС содержит последовательность этапов, позволяющих: - выявить компоненты МБП, нуждающихся в ТКУ; - оценить необходимый для МБП объем ТКУ; определить распределение ТКУ во времени.

Первый этап состоит в отображении медицин­ского протокола в виде сетевого графа МБП (рис. 14). Вершинам графа соответствуют базовые действия МБП Di, где (i = 1,…,n).

Второй этап состоит в выделении действий, которые связаны с «приборными» исследо­ва­ниями, обеспечивающими генерацию медицинских данных, подлежащих передаче, обработке и анализу (рис.15). Компоненты Vi вектора V обозначают потоки данных, соответствующие вершинам Di графа МБП.

Третий этап состоит в определении интенсивности каждого Vi из совокупности потоков V. Поток характеризуется набором параметров Vi(Si, Ri, Ti,…). Для одной операции Di могут существовать несколько потоков Vik, (k=1, 2, ... m) с различными характеристиками.

Четвертый этап (рис.16) учитывает, пространственную и «макровременную» структуру потребности ТКУ в разных МБП крупного учреждения здравоохранения.

Предложен набор методик, позволяющий используя информационную схему БП (ИнС) с равномерной временной шкалой, выполнить переход к формальному представлению и определению характеристик БП.

Методика конструирования информационной схемы РБП. Для территориально распределенного БП (РБП), ИнС описывает сущности 3-х типов: Бизнес-процессы и роли участников БП; Приложения (процессы, службы, информационные ресурсы ИС), выступающие участниками взаимодействия; Сессии с характеристиками местоположения и продолжительности. Последовательность из пяти этапов включает описание компонентов, требования и действия по созданию РБП.

Рис.14. Сетевой граф МБП

Рис.15. Генерация данных

Рис.16. Информационные потоки

Pages:     | 1 |   ...   | 4 | 5 || 7 | 8 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»