WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 ||

где:,– концентрация i-го и j-го компонентов газа; – тепловой эффект реакции; а – коэффициент теплопроводности рабочего тела; сp – удельная массовая теплоемкость; U – скорость газа; Tg – температура ОГ; Ts – температура каталитического нейтрализатора.

При составлении математической модели автором дополнительно учтены: теплота, поступающая с рециркуляционными газами, процесс теплообмена в выпускном тракте рассчитывался с учетом точки росы, процесс теплообмена в нейтрализаторе рассматривался дифференцированно: описывались и анализировались «горячая» и «холодная» фазы.

Для моделирования рабочего процесса и процессов теплообмена в системе выпуска отработавших газов использована программа визуального проектирования SIMULINK пакета MATLAB по составленному автором алгоритму математического моделирования процессов прогрева и теплообмена в выпускном тракте дизеля.

В третьей главе приведены программа экспериментальных исследований, состоящая из пяти этапов, описание экспериментальной установки и измерительной аппаратуры.

Первый этап программы предполагал разработку методики испытаний системы снижения вредных веществ с отработавшими газами дизеля с каталитическим нейтрализатором и ресивером. Затем на втором этапе производилось уточнение диапазона изменения показателей, определяемых в ходе экспериментального исследования, для выбора соответствующей измерительной аппаратуры и приборов.

Третий этап включал исследование влияния процесса прогрева системы выпуска ОГ на работу нейтрализатора, эффективность которого определяется снижением содержания СО и СН в отработавших газах. Испытания нейтрализатора НД59-14Г (НАМИ) проводились на режимах 13-ступенчатого цикла в соответствии с
ГОСТ Р 41.49-2003 (Правила ЕЭК ООН № 49) для получения зависимостей, характеризующих влияние температуры ОГ на эффективность работы каталитического нейтрализатора.

Четвертый этап программы посвящен исследованию влияния процесса рециркуляции отработавших газов на тепловое состояние дизеля на режимах холодного пуска и прогрева. Испытания дизеля проводились на специально созданном лабораторном стенде, схема которого представлено на рисунке 2.

Рисунок 2 – Принципиальная схема экспериментального стенда для испытания

дизеля с каталитическим нейтрализатором, ресивером и устройствами перепуска ОГ

1 – топливный бак; 2 – термопара; 3 – балансирная машина; 4 – весовое устройство балансирной машины; 5 – пульт управления; 6 – испытательный стенд DS-1036; 7 – перепускной воздуховод; 8 – ресивер; 9 – пьезометр; 10 – заслонки; 11 – каталитический нейтрализатор; 12 – термопара; 13 – дизель КамАЗ–740.10; 14 – расходомер топлива

* дополнительно установка оборудована охладителем ОГ (на схеме не показан)

Используемое оборудование и измерительные приборы подвергались метрологическому контролю, что позволило при испытаниях выполнять требования
ГОСТ 14846-1981. Испытания дизеля проводились по программе полнофакторного эксперимента размерности 23.

На пятом этапе производилась оценка адекватности предложенной математической модели ускоренного прогрева дизеля с учетом рециркуляции ОГ полученным экспериментальным данным. Выполнена оценка погрешностей измерений, проведенных в ходе испытаний дизеля с рассматриваемой системой выпуска.

Четвёртая глава содержит результаты и анализ экспериментов. Получены зависимости, отражающие изменение режимных параметров (давление Рог, температура Тог ОГ и температура Тр рециркулируемых газов) в соответствии с рисунком 3. Эти параметры являются составляющими уравнений теплового баланса, изменение которых оказывает существенное влияние на показатели структуры теплового потока ОГ. Целесообразно проанализировать полученные результаты при изменении каждого из приведенных параметров.

В соответствии с рисунком 3,а приведены зависимости давления ОГ от времени заполнения ресивера при переменной температуре отработавших газов. Можно заметить, что за период времени в 5 с наблюдается одинаково интенсивный рост Рог при регулировании температуры ОГ с помощью охладителя (кривые 2 и 3). При отсутствии регулирования температуры ОГ характерен более плавный рост давления Рог (кривая 1). В течение последующих 10 с наблюдается стабилизация давления, а затем продолжается его повышение практически во всех исследуемых случаях изменения температуры ОГ. По истечении 40 с давление газов стабилизируется при значении Рог = 2,4 Па. Повышение давления ОГ при заполнении ресивера объясняется ростом сопротивления его наполнению.

а б

Рисунок 3 – Изменение давления ОГ и температуры рециркулируемых газов в зависимости от времени при заряде ресивера при переменных температурах ОГ

–– – без регулирования Тог ;

Pages:     | 1 ||






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»