WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 || 3 | 4 |
  • осадкообразование,
  • гелеобразование,
  • затвердевание,
  • коагуляция и т.д.

Наиболее распространенными методами для выравнивания профиля приемистости скважин и увеличения охвата пластов заводнением являются способы с использованием композиций, обладающих повышенной вязкостью, в основном, растворов полимеров. Достаточно широко в качестве полимера используют различные полиакриламиды (ПАА), а также различные модификации полимерных растворов: вязко-упругие составы (ВУС), полимердисперсные системы (ПДС), сшитые полимерные системы (СПС) и др.

Основным недостатком применения растворов на основе ПАА является механическая и термическая деструкция полимера при повышенной температуре, а также незначительное время действия водоизоляции (2-3 месяца). Этих недостатков лишены биополимеры. В НПО «ИТИН» разработана технология обработок нагнетательных скважин композицией на основе биополимера - продукта БП-92.

В настоящее время для ВПП нагнетательных скважин широко применяется закачка обратных эмульсий (ОЭ). Перспективность и эффективность их использования обусловлена способностью фильтроваться в высокопроницаемые каналы пласта и трещины, структурироваться при перемешивании с пластовой водой, гидрофобизировать скелет коллектора с увеличением его фазовой проницаемости для нефти. Основным недостатком ОЭ является их термодинамическая нестабильность.

Силикатный гель применяется в нефтяной промышленности с 1935 года как добавка к цементным растворам, связывающим веществам, защитным покрытиям и др. Силикат натрия является дешевым и экологически безопасным реагентом, поэтому идея его использования для изоляции пластов высказывалась давно. В 1949-54 гг. на Туймазинском месторождении были проведены опытные испытания технологии с применением силикатных гелей для изоляции подошвенной воды. Однако из-за низкой эффективности и недостаточной изученности метод не получил широкого практического применения.

В США на основе силиката натрия разработана и применяется система «Zonelock» фирмы Dowell, представляющая собой кислый силикатный гель. Система успешно используется в песчаных, известковых и доломитовых пластах при температуре до 80оС. Основным недостатком ее является повышенная кислотность, поэтому в состав композиции необходимо вводить ингибиторы коррозии для защиты скважинного оборудования.

Была также предложена технология, основанная на последовательной закачке двух оторочек растворов (силиката натрия и кислого агента), которые при смешении в пласте образуют гель. Но эта технология имеет существенный недостаток: в пористой среде растворы плохо перемешиваются, в результате гель не образуется или образуется не во всем объеме.

В результате анализа данных (опубликованных в литературе) по регулированию профилей приемистости нагнетательных скважин было установлено, что в сильно расчлененных песчаных и карбонатных коллекторах с развитой трещиноватостью в призабойной зоне применение гелеобразующих материалов дало отрицательные результаты. В коллекторах, где отсутствовали открытые трещины в призабойной зоне пласта, гелеобразующие составы были эффективны.

Анализ литературного материала показал, что для выравнивания профиля приемистости нагнетательных скважин на нефтяных месторождениях применялось много различных технологий, отличающихся механизмом воздействия, свойствами получаемого изолирующего продукта, сроком действия и т.д. На основании литературного обзора были сформулированы следующие основные требования, определяющие возможность и эффективность применения силикатно-полимерных гелей:

- селективность изоляционных работ;

- прочность и стабильность во времени изоляционного материала;

- способность разрушаться после выполнения задачи;

- технологичность приготовления и закачки состава в пласт;

- низкая стоимость и экологичность используемых реагентов;

- технологическая эффективность применения технологии.

Однако проведенные ранее немногочисленные промысловые испытания технологии на основе силиката натрия показали невысокую технологическую эффективность выполненных работ. Недостаточная информативность по этим работам не позволила выявить все причины низкой технологической эффективности проведенных работ.

Наиболее вероятно, что основными причинами низкой технологической эффективности являются недостаточная изученность физико-химических и реологических свойств гелеобразующих составов, механизма образования и разрушения силикатного геля в пористой среде, влияния различных природных факторов на процесс приготовления, закачки и механизм гелеобразования. На основании вышеизложенного были сформулированы основные задачи исследований.

Во второй главе приведены результаты исследований состава и свойств композиций на основе силиката натрия, влияния различных факторов на физико-химические характеристики силикатного геля, механизм процесса гелеобразования, поведения и разрушения. Исследования проводились по стандартным и разработанным автором методикам.

При взаимодействии силиката натрия с кислым агентом выделяется кремниевая кислота, образующая золь, переходящий со временем в гелеобразное состояние. Если золь представляет собой водный высокодисперсный легко текучий раствор, то гелеобразное состояние системы характеризуется образованием прочной пространственной сетки из частиц дисперсной фазы, в петлях которой находится дисперсионная среда, и практически полным отсутствием текучести. Наибольший практический интерес представляет щелочной гелеобразующий состав с рН больше 7, поскольку он обладает низкой коррозионной активностью.

Основная задача исследований состояла в разработке оптимального состава силикатно-полимерного геля, обладающего длительным временем начала гелеобразования и достаточно высокой прочностью, чтобы выдерживать значительные градиенты давления. Длительное сохранение низкой исходной вязкости гелеобразующей композиции способствует закачке без осложнений больших объемов состава.

На рис.1 представлены кривые изменения вязкости гелеобразующих составов во времени. Как видно, исходная вязкость растворов составляет 1,2 мПа*с, т.е. существенно не отличается от вязкости воды; затем по прошествии определенного времени она резко возрастает, что связано с образованием геля. Это время называется временем начала гелеобразования.

Рис. 1 Изменение вязкости гелеобразующего раствора (6% силиката натрия, 0,9 (№1) и 0,8% (№2) соляной кислоты) во времени при температуре 20оС

С увеличением времени выдержки наблюдается увеличение прочности геля, и только при времени выдержки больше трехкратного времени начала гелеобразования прочность геля практически не меняется (рис.2). Максимальная величина напряжения сдвига характеризует прочность образовавшегося силикатного геля.

Рис.2 Зависимость прочности силикатного геля (6% силиката натрия, 0,7% соляной кислоты) от времени выдержки при различной температуре

На физико-химические свойства гелеобразующего состава и силикатного геля влияют следующие факторы:

  1. концентрация исходных компонентов,
  2. силикатный модуль,
  3. температура,
  4. минерализация воды,
  5. природа кислого агента (разные кислоты, соли и т.д.),
  6. добавка различных наполнителей (полимер и твердые наполнители).

В качестве основных компонентов гелеобразующего состава использовались водные растворы силиката натрия и соляной кислоты. На рис.3 представлена зависимость времени начала гелеобразования и прочности геля от концентрации соляной кислоты в 6% растворе силиката натрия. Как видно, при увеличении содержания кислоты в растворе прочность геля увеличивается, но при этом время начала гелеобразования уменьшается. Для получения достаточно прочных гелей с большим временем гелеобразования необходимо выбирать оптимальную концентрацию кислоты.

Рис.3 Зависимость времени начала гелеобразования и прочности геля от концентрации соляной кислоты в 6% растворе силиката натрия при 20оС

На рис.4 представлена зависимость времени начала гелеобразования и прочности геля от концентрации силиката натрия в гелеобразующем растворе, содержащем 0,6% соляной кислоты. Максимальное время гелеобразования и высокая прочность геля наблюдаются при концентрации силиката натрия 3%. На основании результатов экспериментов по изучению сорбционных характеристик силиката натрия на размолотом керне из полимиктового песчаника и кварцевом песке, а также фильтрационные исследования, чтобы обеспечить данную концентрацию силиката натрия в гелеобразующем составе, необходимо использовать 6% раствор силиката натрия.

Рис.4 Зависимость времени начала гелеобразования и прочности геля от концентрации силиката натрия в 0,6% растворе соляной кислоты при 20оС

В настоящее время отечественная промышленность в основном производит силикат натрия с модулем от 2,0 до 35,0. Силикатным модулем называется коэффициент, показывающий отношение числа грамм-молекул двуокиси кремния к числу грамм-молекул окиси натрия. Были проведены исследования влияния силикатного модуля на физико-химические свойства силикатного раствора и образующегося из него геля.

Обнаружено, что высокомодульный силикат натрия обладает фазовой нестабильностью, т.е. наблюдается увеличение вязкости во времени, что затрудняет с ним работу, силикат натрия с модулем менее 5,0 сохраняет вязкость в течение 1 года и более и образует стабильные гели. При этом с уменьшением модуля время начала гелеобразования увеличивается, а прочность геля уменьшается, и при модуле менее 2,5 силикатный гель образуется в течение месяца и прочность его невелика. Таким образом, наиболее предпочтительным для получения гелеобразующей композиции является силикат натрия с модулем 2,5-4,5.

Существенное влияние, как на скорость гелеобразования, так и на свойства получаемого геля оказывает температура.

На рис.5 представлена зависимость времени начала гелеобразования 6% раствора силиката натрия от концентрации соляной кислоты при различной температуре. Установлено, что с повышением температуры скорость процесса гелеобразования возрастает. При этом прочность образующегося силикатного геля увеличивается. Для получения геля с длительным временем начала гелеобразования и высокой прочностью при высокой пластовой температуре необходимо уменьшить концентрацию соляной кислоты в гелеобразующем растворе.

Рис.5 Зависимость времени начала гелеобразования 6% раствора силиката натрия от концентрации соляной кислоты при различной температуре

Влияние минерализации воды на процесс гелеобразования аналогично температуре: с увеличением минерализации воды время начала гелеобразования уменьшается, а прочность возрастает. При минерализации воды более 14 г/л наблюдается резкое повышение прочности геля за счет образования нерастворимых солей кремниевой кислоты (кальция, магния, стронция и др.), которые укрепляют структуру образующегося геля. Для приготовления гелеобразующего раствора необходимо применять пресную или слабоминерализованную воду.

С целью расширения диапазона применяемых кислых агентов проводились исследования по замене соляной кислоты на другие кислые агенты – «сшиватели». Для исследования были использованы адипиновая (СН2)4(СООН)2, щавелевая (СООН)2, уксусная (СН3СООН), лимонная (С6Н8О7), серная (Н2SО4), борная (Н3ВО3) кислоты, гидрохинон (С6Н4(ОН)2), кислый углекислый натрий (NaНСО3), однозамещенный фосфат калия (КН2РО4), а также моносульфитный щелок (МСЩ), в состав которого входят лигносульфонаты аммония, летучие кислоты, азото- и серосодержащие соединения, фурфурол и целлюлоза. Установлено, что со всеми вышеперечисленными реагентами образуется прочный силикатный гель.

Для модифицирования или армирования структуры силикатного геля и создания геля повышенной прочности были изучены следующие водорастворимые полимеры: гидролизованный полиакрилонитрил (гипан), полиакриламид (ПАА) марки CS-141, CS-151, Цепан и DKS-ORP-F40NT, биополимер БП-92. Результаты исследования процесса гелеобразования силикатных растворов с добавкой в них полимера показали, что с увеличением концентрации полимера в растворе время начала гелеобразования уменьшается незначительно, в то же время прочность образовавшегося геля увеличивается в 1,5-2 раза для гипана и ПАА, и остается постоянной для БП. Оптимальная концентрация полимера в растворе лимитируется исходной вязкостью гелеобразующего раствора, которая влияет на объем закачки раствора в пласт.

Для повышения прочности силикатно-полимерных гелей в гелеобразующий раствор вводились добавки твердых наполнителей: бентонитовый глинопорошок (БГ) и опилочная мука (ОМ). Экспериментальным путем установлена оптимальная концентрация твердых наполнителей в растворе. Проведенные исследования показали, что бентонитовый глинопорошок и опилочная мука в гелеобразующем растворе со временем набухают, их объем увеличивается в несколько раз. Введение твердых наполнителей не влияет на время начала гелеобразования, однако прочность образующихся гелей в несколько раз выше, чем у гелей без наполнителей.

Проведенный комплекс физико-химических исследований позволил сделать следующие выводы:

1. С увеличением концентрации кислого агента в растворе, температуры и минерализации воды время начала гелеобразования силикатно-полимерного раствора уменьшается, а прочность силикатного геля увеличивается.

2. Максимальная прочность силикатно-полимерного геля достигается после выдержки его более трехкратного времени начала гелеобразования.

3. Физико-химические свойства силикатно-полимерного геля зависят от значения силикатного модуля. Наиболее предпочтительным для получения гелеобразующей композиции является силикат натрия с модулем 2,5-4,5.

4. Для приготовления гелеобразующего раствора необходимо применять пресную или слабоминерализованную воду.

5. Силикатно-полимерные гели с добавкой твердых наполнителей могут быть рекомендованы для изоляции суперколлекторов с проницаемостью более 10 мкм2 и трещин в трещиновато-поровых коллекторах.

В третьей главе изложены результаты экспериментальных исследований фильтрационных характеристик пористой среды до и после закачки щелочного силикатно-полимерного геля, проведено исследование механизма образования, формирования и разрушения силикатного геля в пористой среде.

Основная цель исследований сводилась к решению следующих задач:

Pages:     | 1 || 3 | 4 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»