WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 || 3 | 4 |

В работах Альтовского В.Е., Джоши Б.К., Кейльгак К., Лисенко А.Б., Попова Е.В., Овчинникова А.М, Огильви Н.А., Храменко С.В., Швец В.М. и др. рассмотрены особенности формирования родникового стока в различных природно-техногенных условиях. На территории Урала этой проблематике посвящены работы Абдрахманова Р.Ф., Антипина В.И., Блинова Ю.М., Буданова Н.Д., Буренина Г.С., Веретенниковой А.С., Всеволожского В.А., Вострокнутова Г.А., Дерягина В.В., Зеленина Г.П., Знаменского И.К., Иконникова С.А., Кадыкина Ф.И., Катаева В.Н., Клер М.О., Ковалева В.Ф., Ковальчука А.И., Курочкина Ю.С., Латышева П.П., Макова К.И., Максимовича Г.А., Прейс В.Ф., Эпштейн В.В. и др. Установлено, что качество родниковых вод зависит от целого ряда природных и техногенных факторов и изменяется во времени.

На территории г. Москвы состав грунтовых вод приобрел сульфатный кальциевый облик, при естественном в долинах рек – гидрокарбонатном кальциевом. Высокая минерализация грунтовых вод от 1,0 до 5,0 г/л, а на отдельных участках до 28,0 г/л наблюдается в районах крупных промышленных зон. В долинах рек, где в основном находятся все родники, минерализация вод не превышает 1,0 г/л, что связано с разубоживанием грунтовых вод речными (Швец В.М. и др.).

На территории г. Перми многолетними наблюдениями установлено возрастание минерализации грунтовых вод от 450 мг/л в 1961 г. до 840 мг/л - к 1983 году, увеличение содержания типичных загрязняющих компонентов (NO3, SO4, Cl), а также концентрации ионов HCO3, Na, K, Mg, которыми подземные воды обогащаются при полном разложении твёрдых бытовых и промышленных отходов (Катаев В.Н.). Исследованиями Щуровой И.В. установлена полная или частичная техногенная метаморфизация состава грунтовых вод во времени (сульфатизация) с вытеснением ионов кальция и нитрата.

Техногенное изменение родникового стока не является прерогативой крупных мегаполисов. Например, в Центральных Гималаях (Индии) в результате сокращения лесов, денудации, интенсивного использования ядохимикатов, выпаса скота и значительной техногенной нагрузкой со стороны населенных пунктов происходит снижение дебитов родников и их загрязнение, сопровождающееся ростом концентрации нитратов, сульфатов, кальция и др. (Джоши Б.К.).

На территории Среднего Урала государственным гидрогеологическим картированием установлено загрязнение некоторой части родникового стока, нашедшее отражение в монографии «Гидрогеология СССР. Том XIV. Урал». В более поздних работах (Вострокнутов Г.А. и др., 2000-2001 гг.) по результатам представительного гидрохимического опробования малых рек 1993 г. выполнена классификация ранжированных гидрохимических спектров и установлены средние значения основных ионов в пределах Среднего и Северного Урала (мг-экв/л). В целом воды гидрокарбонатного состава с переменными соотношениями катионов, что обусловлено различиями в составе водовмещающих пород и минерализацией 200-300 мг/л, составили свыше 80 % из изученных 2554 проб. Их формирование тесно связано с процессами углекислотного выветривания водовмещающих пород в пределах гумидной зоны. Ореолы техногенного загрязнения характерные для малых рек, отличаются наиболее высокой минерализацией (в среднем 796 мг/л), относительно пониженной рН (в среднем 5,9) и SO4–Na+K–Ca составом. Они составляют менее 1 % всех проб и пространственно приурочены к центрам горного производства, имеющим сбросы сточных вод в поверхностные водные объекты, что снижает представительность выполненной оценки для подземных и родниковых вод.

По результатам длительных наблюдений на роднике «Деевский», расположенном на восточной границе Среднего Урала в зоне погружения карбонатной водоносной зоны под чехол рыхлых мезо-кайнозойских образований, установлено трендовое изменение химического состава в сторону увеличения солесодержания (рис. 1).

Рис.1. Изменение общей минерализации воды родника “Деевский”

Известно, что родниковый сток служит очень важным звеном внешних связей подземных вод и показателем их внутреннего состояния, формирующегося под влиянием группы естественных (природных) и искусственных (техногенных) факторов (Гольдберг В.М, Крайнов С.Р., Швец В.М. и др.). Среди естественных факторов формирования химического состава родниковых вод выделяют физико-географические, геологические и гидрогеологические. Физико-географические факторы объединяют орогидрографические, климатические и биогенные факторы.

Орографически Средний Урал - это типичное низкогорье. Перепад высот в основном составляет 500 - 600 м. Верхние части хребтов сложены наиболее устойчивыми породами. Скальные выходы наблюдаются и в пределах речных долин, обычно узких и врезанных на глубину 30 – 60 м. Почти все основные реки пересекают район в субширотном направлении. Наиболее крупными из них на восточном склоне Среднего Урала являются Тура, Тагил, Нейва, Реж, Ирбит. Большинство естественных выходов подземных вод приурочены к бортам речных долин.

Климат территории резко континентальный, средняя годовая температура воздуха колеблется от 1,2 до 2,3 0С. Количество осадков в пределах Среднего Урала составляет на западном склоне 550-650 мм, на восточном – 450-550 мм. Основную часть осадков приносят циклоны с западным переносом воздушных масс, максимум которых приходится на теплый сезон, в течение которого выпадает 60-70 % их годовой суммы.

Среди числа биогенных факторов выделяют рас­тительность и почвы. Залесенность местности способствует уменьшению поверхностного и увеличению подземного стока. На обезлесенных территориях талый поверхностный сток смывает почву, образует овраги, которые еще больше снижают уровень грунтовых вод. Твердый сток глинистых частиц приводит к заилению родников - происходит своеобразная "цементация" русла родника. Почвенно-растительный слой является граничным на по­верхности земли минерально-органогенным образованием, от свойств которого зависит режим влажности и солей в зоне аэрации, а также интенсивность инфильтрационного питания грунтовых вод. Дневная поверхность этого слоя является геохимическим барьером, где про­исходит резкая смена химического состава атмосферных осадков (Перельман А.И., Сает Ю.Е., Шварцев С.Л. и др.).

Комплекс горных пород Урала формировался в пределах верхнепротерозойской и палеозойской геосинклинальной области. Для Среднего Урала характерна четкая локализация и резко выраженная субмеридиональная на­правленность его основных структурных элементов, сменяющих друг друга в широтном направлении (с запада на восток), а также максимальная на Урале концентрация массивов интрузивных пород. Коллекторские свойства скальных пород определяются только интенсивностью трещиноватости, зависящей от физико-механических свойств пород и их геоструктурного положения. Мощность покровных преимущественно глинистых образований (коры выветривания) составляет первые десятки метров.

Согласно действующему гидрогеологическому районированию (ВСЕГИНГЕО, 2001 г.), территория Среднего Урала принадлежит к Среднеуральской гидрогеологической складчатой области (ГСО) и представляет собой типичный гидрогеологический массив с активными водообменными процес­сами (Кирюхин В.А., 2005). В границах Среднего Урала получили преимущественное распространение гидрогеологические массивы с двухэтажным строением геологического разреза. Сложное сочетание литологических, тектонических и неотектонических условий обусловливает неравномерную водоносность комплексов пород, выделяя в разрезе три вида стока: приповерхностный; трещинно-грунтовый – региональная зона выветривания коренных пород; трещинно-напорный – зона локальной литогенетической и тектонической трещиноватости. Средняя часть отличается наиболее активной трещиноватостью мощностью в среднем 20-80 м. Родниковая разгрузка зоны имеет нисходящий характер, типичный дебит, по данным автора, до 1 л/с, сезонность и изменчивость стока, зависящие от времени.

Широким развитием в пределах Среднеуральской ГСО пользуются и локальные линейные трещинные зоны аномально высокой проницаемости, связанные с проявлениями дизъюнктивной тектоники, внедрением интрузий, контактами карстующихся пород с некарстующимися. Открытая трещиноватость в таких зонах прослеживается на многие сотни метров (до 200-250 м), максимально до 400 м. Здесь, среди консолидированных пород, рассматриваемых для региональной зоны в качестве водоупора, получили развитие трещинно-жильные воды, тесно связанные с подземными водами зоны региональной трещиноватости. Выход трещинно-жильных вод на поверхность земли фиксируется восходящими родниками.

На территории Среднего Урала выделяют четыре основные гидрогеологические формационные зоны: в карбонатных (и терригенно-карбонатных) отложениях с мощностью зоны региональной трещиноватости 60—80 м; в вулканогенно-осадочных и в метаморфических породах, в которых экзогенная трещиноватость имеет развитие до глубины 40—60 м; в массивах интрузивных пород с минимальной глубиной региональной трещиноватости - 20—40 м (Буданов Н.Д., Прейс В.Ф.). Водоносные зоны отличаются по геоморфологическому положению и степенью защищенности от аэрогенного загрязнения. Осадочные породы карбонатного и терригенно-карбонатного состава заполняют межгорные депрессии и речные долины, отличаются более мощным чехлом рыхлых покровных образований различного генезиса и, несмотря на развитие суффозионно-карстовых провалов, относительно хорошо защищены от аэрогенного загрязнения. Массивы интрузивных образований, как наиболее крепкие и слаботрещиноватые породы, слагают вершины водоразделов и имеют минимальную мощность перекрывающих их кор выветривания, поэтому открыты для аэрогенного техногенного воздействия.

Все горизонты гидравлически взаимосвязаны, имеют преимущественно атмосферное питание, а уровенная поверхность в сглаженном виде повторяет рельеф поверхности земли. В контакте с плохо проницаемыми породами и залеченными разломами, выполняющими барражирующую роль, прослеживаются многочисленные выходы подземных вод. Преобладают родники нисходящего типа, что закономерно для гидрогеологических массивов. Восходящие источники составляют 30 %. К тектоническим зонам приурочены крупные источники с дебитами до 100 л/с.

Фоновым признается химический состав подземных вод, формирующийся под влиянием региональных гидрогеологических условий, вне зоны действия рудных тел и их ореолов, а также техногенных факторов (Крайнов С.Р., Швец В.М.). В горных и предгорных районах лесной таежной зоны Среднего Урала, где широкое распространение получили лесные кислые горные неоподзоленные почвы, хорошие условия питания и дренирования подземных вод, преобладающией силикатный соста­в водовмещающих коллекторов, для родникового стока характерны ультрапресный и пресный гидрокарбонатный состав с минерализацией от 0,1—0,2 до 0,3—0,5 г/л, низкая рН (около 5,5 ед.), высокая цветность, окисляемость, повышенные значения кремнекислоты. Для родникового стока заболоченных территорий свойственны повышенные содержания железа и марганца.

В комплекс основных искусственных (техногенных) факторов и условий относят различные искусственные объекты, сооружения, строительство и эксплуатация которых изменяет направленность формирования и структуру водного и солевого балансов подземных вод (Гольдберг В.М.. Плотников Н.И). Воздействие техногенных объектов может проявляться через проникновение (инфильтрацию) различных сточных вод и утечек в подземные горизонты, а также фильтрацию загрязненных атмосферных осадков, через загрязненные аэрогенным путем почвы и породы зоны аэрации.

По масштабам загрязнения В.М. Гольдбергом выделяются локальное и региональное техногенные воздействия. Первый тип воздействия наиболее интенсивен и происходит непосредственно на участке промышленных предприятий и особенно вблизи поверхностных хранилищ отходов. Шламо- и хвостохранилища, пруды-накопители, отстойники, водопроводно-канализационная сеть и т.п. предопределяют появление дополнительных источников питания под­земных вод. Локальное техногенное воздействие обычно носит гидрогенный характер и ограничено площадью ленты тока, формирующейся от купола растекания.

Газо-пылевые выбросы, пыление золошлаковых отвалов и т.п. разносятся по преобладающему направлению ветров в приземном слое атмосферы вне зависимости от направлений стока и поэтому могут воздействовать на почвы и гидрохимический режим сразу нескольких гидрогеологических структур или речных бассейнов, суммируя свои воздействия. Следовательно, они влияют на состояние подземных вод на региональном уровне, хотя и с меньшей степенью интенсивности. Под влиянием аэрогенного загрязнения возможно формирование регионального искусственного гидрохимического фона грунтовых вод.

На территории Среднего Урала уровень развития промышленности и урбанизация территории определяют наличие как аэрогенного (регионального), так и гидрогенного (локального) техногенного воздействия. Средний Урал не только одна из самых старейших горнопромышленных территории России, но и интенсивно развивающийся регион. Сброс сточных вод в поверхностные водные объекты Свердловской области имеет тенденцию к росту на 0,4 % в год. Например, за 2006 г. сброс в реки увеличился на 7,5 млн м3 (0,9 %) и составил 821,4 млн м3. Интенсивность аэрогенной нагрузки от объектов техногенеза на территории Свердловской области составляет 1287,3 тыс. тонн (табл. 1). Выбросы от автотранспортных средств за период с 2002 по 2006 гг. увеличились от 445,3 до 610 тыс. т.

Объем образования твердых отходов на территории Свердловской области за 2006 год вырос во всех отраслях: на предприятиях черной металлургии на 69,7 млн т (36,7 % от общего объема отходов), стройиндустрии – 59,2 млн т (31,2 %), цветной металлургии – 50,8 млн т (26,8 %). Для Среднего Урала присущи участки давних и современных разработок месторождений твердых полезных ископаемых, сопровождаемые перемещением огромных масс горных пород, техногенными геохимическими полиэлементными ореолами рассеяния (Емлин Э.Ф., 1991).

Таблица 1

Объем и состав выбросов в атмосферу от стационарных

источников на территории Свердловской области в 2006 году (тыс. т)

Всего

Оксид углерода

Оксид азота

Летучие органические соединения

(ЛОС)

Твердые вещества

Диоксид серы

Углеводороды без ЛОС

Прочие газообразные и жидкие

1287,3

318,2

133,2

Pages:     | 1 || 3 | 4 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»