WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     ||
|

Другой изменяемый параметр – граница разделения – оказывает существенное влияние на выходы и на качество продуктов. При смещении границы разделения вправо (значение величины разделительного признака стремится к максимальному) вид распределения концентрата стремится к левоасимметричному, то есть выход уменьшается, а качество увеличивается, при смещении границы влево (значение величины разделительного признака стремится к минимальному) выход увеличивается, а его качество снижается. При этом для хвостов имеет место стремление вида распределения к правоасимметричному. В случае значительных значений Epm формируются продукты с выраженными асимметричными законами распределения, при малых значениях Epm распределения для продуктов близки к равномерным, но имеют меньший диапазон варьирования.

Таким образом, можно сказать, что при решении конкретных технологических задач необходимо учитывать влияние, оказываемое изменением значений Epm и границы разделения, на конечный вид распределений получаемых продуктов.

Кроме того, была решена задача получения продуктов заданного качества для различных видов исходных функций фракционного состава.

Гипотетические функции распределения фракционного состава представлены на рис. 7.

На рис. 8 представлены зависимости выходов продуктов разделения – концентрата и хвостов – от заданного качества этих продуктов для различных исходных распределений по массовой доле компонента. Для левоасимметричных распределений качество концентрата назначено в долях единицы, в данном случае ставится задача получения богатого концентрата. Для прочих случаев качество концентратов и хвостов принято в относительных единицах к ср.

Значения Epm варьировались в широком диапазоне – от 0,001 до 0,5. Используемые значения Epm являются приближенными к значениям точности разделения реальных обогатительных аппаратов. Следует отметить, что при значениях Epm=0,001 сепарационная характеристика фактически близка к идеальной, при этом результаты прогноза технологических показателей разделения (выход и качество продукта) совпадают с показателями, получаемыми по кривым обогатимости Анри.

Была установлена зависимость влияния границы разделения на эффективность разделения в аппарате, которая оценивалась по критерию Ханкока-Луйкена (см. рис. 9).

В результате решения технологической задачи получены следующие результаты:

  1. Вид фракционного состава исходного продукта влияет на требуемую точность сепаратора. Так, например, для исходного унимодального 2А и правоасимметричного 1В требуется высокая точность даже для получения бедных концентратов (=1,1ср; =2ср): выход концентрата с =1,1ср для унимодального распределения 2А при Epm=0,001 составляет 0,8070 д. е., а при Epm=0,1 – 0,6724 д. е. (разница 0,1346 д. е.), а для правоасимметричного распределения 1В разница составляет 0,2139 д. е. Для левоасимметричных распределений (2Г) также необходима высокая точность сепаратора для получения максимального выхода высококачественных концентратов (=0,89-0,93 д. е.).При получении хвостов заданного качества для симметричного распределения 2А и левоасимметричного (2Г) распределений точность сепаратора незначительно влияет на выход продукта, для значений Epm=0,001-0,1 значение выхода находится примерно на одном уровне, разница не превышает 0,15 и 0,05 д. ед., соответственно. Для правоасимметричных распределений необходима высокая точность сепаратора, особенно для получения максимального выхода бедных хвостов (=0,050,2ср).
  1. Степень асимметрии функций распределений продуктов, подвергаемых разделению, также влияет на требуемую точность аппарата. Этот факт подтверждается на примере асимметричных распределений. Рассмотрим на примере получения концентрата заданного качества из продуктов, имеющих левоасимметричные функции распределения (1Г и 2Г), степень асимметрии этих продуктов различна: - 2,09 и -1,27 соответственно. Для получения выхода концентрата 0,8 д. е. качеством =0,89 д. е. требуемая точность сепаратора для распределения с большей степенью асимметрии (1Г) невысока (Epm=0,3), тогда как для распределения с меньшей степенью асимметрии (2Г) даже высокоточным сепаратором (Epm=0,001) не удается получить такого значения выхода концентрата. Подобная картина наблюдается и для симметричных бимодальных распределений, только в этом случае распределения характеризуются степенью раскрытия. Для продукта с большей степенью раскрытия (1Б) выход концентрата заданного качества будет выше, чем у продукта с меньшей степенью раскрытия (2Б) при прочих равных условиях.
  2. Эффективность разделения зависит от точности сепаратора (т. е. от значения Epm) и от исходного фракционного состава продукта. С уменьшением точности разделения уменьшается и эффективность. При невысокой точности аппарата (Epm=0,5) эффективность разделения незначительно зависит от границы разделения. Для симметричных и левоасимметричных распределений максимальная эффективность разделения достигается при =ср. Причем для левоасимметричных распределений это верно лишь при условии высокой точности сепаратора (Epm=0,001-0,1), при снижении точности экстремум смещается влево от =ср. Для правоасимметричных распределений максимальная эффективность достигается при смещении границы разделения вправо от =ср.
  3. Достаточной точностью для решения любых технологических задач является Epm=0,01 (а для легкообогатимых продуктов – 0,1). Разница в технологических показателях, таких как выход концентрата и хвостов, при идеальном разделении и при разделении с точностью Epm=0,01 и не превышает 0,02. Эта тенденция сохраняется для всех видов рассмотренных распределений.

Полученные результаты доказывают, что при выборе и дальнейшей настройке сепаратора необходимо учитывать вид функции распределения по признаку (содержанию) обогащаемого продукта.

Для многих процессов вероятность перехода частиц определенных фракций в различные продукты зависит не только от некоего физического свойства, но и от крупности – d. Примером таких процессов являются магнитные и особенно гравитационные процессы.

Следовательно, для описания таких процессов необходимо использовать двумерные сепарационные характеристики (, d). В такой сепарационной характеристике введение второго аргумента d позволяет учесть различную эффективность разделения зёрен различной крупности.

В работе рассмотрено влияние введения d в качестве второго аргумента в суммарную сепарационную характеристику для учета мелких и тонких классов, находящихся за границей разделения или в приграничной области допустимой глубины обогащения, на прогноз результатов разделения.

Если провести интегрирование сепарационной характеристики по d во всем диапазоне, можно убедиться, что из-за нечувствительности процесса в области мелких и тонких классов и неудаления их операциями грохочения или классификации итоговая характеристика может существенно ухудшиться в сравнении с характеристикой для номинальной крупности процесса.

С помощью математического моделирования доказано, что помимо распределения по содержанию полезного компонента необходимо учитывать и распределение по крупности.

При моделировании были приняты следующие допущения: исходный продукт представлен двумерной плотностью распределения (по крупности и по признаку); признаком разделения является содержание полезного компонента; плотность распределения по признаку изменяется во всех классах крупности по одинаковым законам. Задача моделирования – выявить, как изменяется суммарная плотность распределения в зависимости от вида закона распределения по крупности.

Были заданы распределения по крупности: равномерное, правоасимметричное и левоасимметричное. Выделено три класса крупности – 0-d1; d1-d2; d2-d3, для каждого класса крупности частиц задана сепарационная характеристика. В качестве целевого продукта назначен концентрат, и по известным формулам вычислена плотность распределения по массовой доле полезного компонента в концентрате после разделения.

Суммарная плотность распределения целевого продукта с учетом доли класса крупности учитывалась по формуле

к=()-1 [1 · к1()+2 · к2()+3 · к3()], (2)

где 1, 2, 3 ; к1(), к2(), к2() – доли и плотности распределения целевого продукта классов крупности 0-d1; d1-d2; d2-d3 соответственно.

При решении задачи получены следующие выводы:

  • помимо распределения по содержанию полезного компонента необходимо учитывать и распределение по крупности, особенно это касается асимметричных распределений как по признаку, так и по крупности;
  • наличие значительного числа мелких и тонких классов, находящихся за границей глубины обогащения, существенно ухудшает итоговую характеристику целевого продукта;
  • наличие значительного количества классов крупности, соответствующей номинальной крупности процесса, позволяет получить удовлетворительные результаты разделения даже на весьма труднообогатимом сырье.

В пятой главе предлагаются методики расчета схем обогащения с использованием закономерностей раскрытия и разделения минеральных фаз и преобразующих функций аппаратов, обоснована принципиальная схема обогащения хромитовой руды месторождения Рай-Из.

Методика построения принципиальной схемы обогащения должна обеспечить:

  • синтез сложных схем, включающих несколько стадий и циклов обогащения;
  • качественно-количественный расчет схемы с получением значений выхода продукта, содержания в нем полезного компонента, извлечения полезного компонента в продукты обогащения.

Методика построения принципиальной схемы обогащения должна давать информацию о меняющемся фракционном составе обогащаемого сырья.

В методике учтены следующие основные положения:

  1. закономерности раскрытия минеральных фаз в ходе технологических преобразований, таких как сокращение крупности и разделение;
  2. возможность использования различных физических свойств для разделения в разных стадиях и циклах;
  3. несовершенство работы аппаратов;
  4. преобразование фракционного состава в ходе технологических преобразований;
  5. возможность оптимизации операций изменения границ (сокращения крупности) и дополнительных операций;
  6. возможность проектирования схемы блоками с последующей оптимизацией их структуры;
  7. возможность оптимизации структуры схемы в целом.

Двумерные распределения по содержанию компонентов и по крупности являются основой для построения принципиальной схемы обогащения.

Анализ вида полученных двумерных распределений дает необходимую информацию:

  • для выявления характерных зон группирования частиц с разными содержаниями;
  • генерирования возможных вариантов границ разделения и соответствующих им множеств принципиальных схем разделения.

Использование для построения принципиальной схемы обогащения двумерных распределений по содержанию компонентов и крупности влечет за собой необходимость использования двумерных сепарационных характеристик для расчета трансформации фракционного состава в ходе операций разделения.

При выборе схемы необходимо учитывать последовательное преобразование функций фракционного состава с использованием сепарационных характеристик аппаратов для руд по физическим свойствам и крупности. Должны учитываться преобразующие функции аппаратов дробления, измельчения, дезинтеграции; должны рассчитываться как фракционный состав с(d, i,), так и показатели в продуктах (,, ).

При выборе схемы необходима пошаговая оптимизация, а именно: последовательный перебор таких величин, как значение границ разделения, степень разрушения для достижения частной цели при наложенных ограничениях и т. п.

Блочный принцип (стадия, цикл, и т. п.) при выборе схемы возможен со своими целями и ограничениями. Выбор производится по всем операциям стадии или цикла, с оптимизацией по блоку в целом.

Исходный продукт должен характеризоваться двумерным распределением по содержанию (признаку) и крупности.

Согласно предлагаемой методике, построена принципиальная схема обогащения хромитовой руды месторождения Рай-Из (см. рис. 10). На основе анализа раскрытия минеральных фаз и сростков хромитовой руды месторождения Рай-Из сделан вывод о крупности раскрытия минерала (хромшпинелида). Исследования контрастности хромитовой руды выявили, что исходная хромитовая руда может быть вовлечена в переработку с получением кондиционных концентратов. В соответствии с требованиями по качеству и крупности, предъявляемыми к хромитовым концентратам, для данной руды предлагается схема с выделением двух видов концентрата – крупнокускового и гравитационного.

Крупнокусковой концентрат направляется непосредственно в металлургический передел, а гравитационный концентрат подвергается окускованию и также идет в дальнейшем на металлургическую переработку.

Построение принципиальной схемы обогащения на примере хромитовой руды доказывает, что при проектировании схемы обогащения необходимо учитывать особенности строения руды, распределение крупности зерен минерала и распределения по содержанию минерала в различных классах крупности.

При построении принципиальной схемы обогащения нужно опираться на экспериментальные данные о раскрытии минеральных фаз и сростков. Предложенная принципиальная схема обогащения построенная с учетом распределения крупности зёрен хромитовой руды и изменения фракционного состава в различных классах крупности совпадает с принципиальной схемой обогащения этой руды, полученной путем экспериментальных исследований.

ЗАКЛЮЧЕНИЕ

В диссертационной работе получено решение актуальной научно-практической задачи выбора, расчета и построения принципиальных схем обогащения, имеющей существенное значение для проектирования технологических схем. Предложенная методика выбора, расчета и построения схем учитывает закономерности раскрытия минеральных фаз при дроблении и измельчении; двумерные характеристики фракционного состава по массовой доле компонента и крупности и двумерные сепарационные характеристики аппаратов

Основные научные результаты, выводы и рекомендации работы заключаются в следующем:

Pages:     ||
|



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.