WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 ||

3.1; 3.2 – однополюсный или многополюсный статор, определяется назначение молота;

4.1; 4.2 – якорь-ударник цельный или составной, определяется выбранным типом статора;

4.3; 4.4 - исполнение торца якоря-ударника с плоской или сферической поверхностью соответственно;

5.1; 5.2; 5.3; 5.4; 5.5; 5.6 – конструктивное исполнение контактной поверхности рабочего инструмента: плоская, сферическая, коническая, клиновая, пирамидальная, крестообразная. Определяется назначением молота.

Выбор принципа действия и частоты ударов, вершины 1.1 … 1.5, определяется функциональным назначением молота.

Введение в модель органоструктуры электромолота элементов 2.1 … 2.4, отображающих множество возможных типов конденсаторов, установленных в импульсном преобразователе энергии, объясняется тем, что они оказывают решающее влияние на такие параметры установок, как масса, габариты и стоимость.

Таким образом, модель органоструктуры, представленная на рис. 3, с достаточной полнотой отражает возможные варианты исполнения основных элементов электромагнитных молотов, следовательно, она позволит определиться с рациональной структурой электромолота, технически возможной в настоящее время.

Третья глава посвящена исследованию свойств дробимости горных пород при воздействии механическим ударом. Поскольку в натурных условиях проведение экспериментов по дроблению горных пород невозможно по экономическим и техническим причинам, предпочтение было отдано лабораторным исследованиям на физической модели. Для проведения исследований был разработан и изготовлен специальный испытательный стенд (рис. 4).

В результате статистической обработки результатов эксперимента для образцов из гранита были получены следующие регрессионные уравнения:

для клинового рабочего инструмента

Еур = -13 + 1720/Е ; (3)

для конического рабочего инструмента

Еур = -11 + 2377/Е ; (4)

для сферического рабочего инструмента

Еур = -51 + 7153/Е. (5)

Корреляционные отношения этих зависимостей соответственно равны 0,88,0,7 и 0,86, что свидетельствует о наличии устойчивой связи между удельной энергией разрушения и энергией единичного удара. Значимость корреляционного отношения определялась по t–критерию. С доверительной вероятностью 95 % корреляционные отношения уравнений 3, 4, 5 статистически значимы, так как расчётные значения t–критерия соответственно:tрасч1= 5,13; tрасч2= 3,52; tрасч3= =3,52, а критическое значение tкр1 = 0,35; tкр1 = 0,36; tкр1 = 0,40. Проверка значимости уравнений 3, 4, 5 по критерию Фишера показала, что с надёжностью, соответственно 95 %, 90 % и 99 % они адекватно описывают влияние энергии единичного удара на удельную энергию разрушения куска горной породы, так как Fрасч1= 3,91> Fкр1 = 1,85; Fрасч2= 1,66 > Fкр2 = 1,60; Fрасч3= 37,2 > Fкр3 = 2,84.

Корреспондирование полученных результатов на натурные условия возможно при соблюдении критериев подобия процессов разрушения. В работе на основе – теоремы были рассмотрены условия, при которых возможно подобие процессов разрушения негабаритов в натурных условиях и процессов разрушения отдельных кусков в лабораторных условиях. На основе анализа существующих в этой области работ физическое уравнение процесса разрушения породы ударом механическим воздействием представлено в виде функционала

= (Э, С, Ед,, V, mя, mи,, n,,, k, D,, i, T), (6)

где Э – энергия, расходуемая на процесс разрушения, Дж; С - жесткость основания, на котором покоится разрушаемый негабарит, Н/м; Ед – динамический модуль упругости породы, МПа; – прочность горной породы на сжатие, МПа; V – скорость соударения подвижного якоря с рабочим инструментом, м/с; mя – масса подвижного якоря устройства дробления, кг; mи – масса рабочего инструмента, кг; – коэффициент Пуассона дробимого материала; n – показатель упругопластических свойств породы; – коэффициент внешнего трения; – плотность породы, кг/м3; k – коэффициент восстановления дробимой породы; D – эквивалентный диаметр дробимого куска, м; – относительная деформация куска под действием ударного импульса; i – степень дробления куска по массе; T – время, с.

Анализ размерностей параметров позволил выявить все возможные сочетания групп независимых параметров и соответственно критерии подобия:

, 2= VE-0,5 0,5, 3=mя -1 D-3, 4=TE0,5 -0,5D-1,5=mя m-1, 6=E-1,

7=, 8=n, 9=, 10=k.

Индикаторы подобия для группы независимых параметров имеют вид

; ; ;

Масштабы для оставшихся параметров будут определяться следующими соотношениями

mE = mD0,5 m0,25/mT0,5 (7)

Соотношения (7) устанавливают взаимосвязь между размерными параметрами процесса дробления негабаритов при корреспондировании результатов моделирования с условий модели на натурные процессы.

В четвертой главе рассмотрен метод выбора внутренней структуры и основных параметров электромагнитного молота для конкретных заданных условий эксплуатации. На рис. 5 представлена блок-схема алгоритма расчета основных параметров.



Рис 5 Блок схема расчета основных параметров электромагнитного молота

Вид – стационарный или мобильный и место установки электромагнитного ударного механизма (ЭММ) определяются в результате анализа органоструктуры КСМ, т. е. системы верхнего уровня, составной частью которой и является рассматриваемая установка. Как правило, местом установки стационарного ЭММ является перегрузочный пункт, а мобильного – забой экскаватора. Следовательно, выбор места рассматриваемого устройства в структуре КСМ и его назначение определяются заказчиком.

Для расчета используются следующие параметры:

п – прочность горной породы на сжатие, Па; Dэ – максимальный, эквивалентный диаметр негабарита, м; –выход негабаритов в отбитой горной массе, %; Uk – напряжение зарядки конденсаторов, В; [] – допускаемое напряжение материала рабочего органа, т. е. рабочего инструмента электромолота, Па; iд– степень дробления куска; kз – коэффициент запаса, учитывающий неполный разряд конденсаторов, токи утечки, механический кпд молота, электрические и магнитные потери в электрических и магнитных цепях молота, снижение емкости конденсаторов при отрицательных температурах, старение электролита и т. п. принимаем в первом приближении равным 2,5 … 3; fy – частота ударов молота, 1/с; [a] – допускаемое значение виброускорения рабочего места оператора, если оно располагается на базовой машине, м/с2.

Один из главных параметров молота - частота ударов в единицу времени - определяется исходя из требуемой производительности установки:

(8)

где Q – производительность перегрузочного пункта (участка), т/час; – выход негабарита, %; D - эквивалентный диаметр куска, м; - плотность горной породы, т/м3; nу – число ударов до разрушения негабарита (принимается в пределах от 1 до 5).

Энергия единичного удара якоря перед его ударом по рабочему органу для электромагнитного молота (в Дж) находится из формулы

Е1=1000ЕурD2,

где Еур - удельная энергия единичного удара, необходимая для разрушения негабарита, кДж/м2.

ЗАКЛЮЧЕНИЕ

В диссертационной работе содержится решение задачи, состоящей в разработке органоструктуры комплекса средств механизации для ведения технологического процесса разрушения негабаритов, установлении закономерностей связи энергетических параметров и физико-механических свойств разрушаемых горных пород с рациональными параметрами ударных машин, имеющей существенное значение для теории проектирования ударных машин.

Основные научные и практические результаты работы заключаются в следующем:

1. Разработана модель внутренней структуры КСМ, которая позволяет формализовать процесс позиционирования установки для дробления негабаритов в общей структуре ГП, что упрощает процесс выбора рационального типоразмера установки и смежного оборудования в конкретных условиях, а также наиболее рациональный вариант их сочетания.

2. Основой для разработки математического обеспечения при принятии решения по структуре установок для дробления негабаритов, а также КСМ в целом служат модели структуры КСМ. Их необходимо использовать на этапе проектирования и в процессе эксплуатации ГП.

3. Эффективность установок необходимо производить по таким интегральным показателям как: энергоемкость выполнения той или иной функции технического процесса; материалоемкость этих технических средств; возможность выполнения дополнительных вспомогательных функций или совмещения основных функций, а также её цена и затраты при эксплуатации.

4. Суммарная удельная энергия удара, необходимая для разрушения куска горной породы, увеличивается не линейно с уменьшением энергии единичного удара. Разрушение куска породы прекращается, когда величина энергии удара становится меньше порога чувствительности. Величина удельной энергии удара, обеспечивающей стабильное разрушение кусков горной породы за 1…5 ударов и соответственно требуемую производительность ударной машины, должна быть на 15…20 % меньше Еур.max.

5. Разработанный алгоритм расчета основных параметров электромагнитного молота позволяет учитывать следующие факторы: прочность горной породы на сжатие, эквивалентный диаметр негабарита, процент выхода негабаритов в отбитой горной массе, напряжение зарядки конденсаторов, допускаемое напряжение материала рабочего органа, степень дробления куска. При этом определяются такие параметры молота, как: энергия единичного удара, частота ударов, масса молота.

6. Основные результаты работы и практические рекомендации использованы ЗАО «Импульсные техника и технологии» при проектировании электромагнитных молотов с энергией удара 2 и 10 кДж, предназначенных для разрушения негабаритов в шахтах и разрезах Кузбасса и в ОАО «Уралредмет» при проектировании установки для дробления лигатур. Суммарный экономический эффект от использования результатов исследования составляет 360 тыс. руб. в год.

Основные результаты работы опубликованы в следующих работах:

1. Саитов В.И., Чупров И.В. Энергетические аспекты проблемы дробления негабаритов при ведении горных работ//Научные основы и практика разведки и переработки руд и техногенного сырья: Мат-лы Междунар. науч.-техн. конф. - Екатеринбург, 18-21 июня 2003 г.

2. Афанасьев А.И., Саитов В. И. Чупров И. В. Технические средства дробления негабаритов, перспективы и тенденции развития//Состояние, проблемы и перспективы развития сырьевой базы и машиностроения для камнеобрабатывающей промышленности: Мат-лы I Междунар. науч.-практ. конф. Москва, 11-12 марта 2004 г. GLOBAL EXPO –УГГГА. - Екатеринбург, 2004. - С. 96-99.

3. Саитов В.И., Чернышов А.А., Чупров И.В. Моделирование структур передвижных дробильных установок// Горные машины и автоматика. – 2004 - № 4.- С. 29-31.

4. Саитов В.И., Чупров И.В. Проблема выбора технических решений в процессе оптимизации комплекса средств механизации для открытых горных работ. Известия Уральского государственного горного университета. Вып. 21. Сер. Горное дело. – Екатеринбург, 2005. - С. 151-155.

5. Саитов В.И., Чупров И.В. «Критерии подобия процесса дробления горных пород несвободным ударом» Горный информационно-аналитический бюллетень. Москва, 2006 г.№3. С.351-353.

6. Чупров И.В. Взаимосвязь удельной энергии разрушения горной породы с энергией единичного удара//Известия вузов.Горный журнал. – 2004 - №5. С.66-69.

Подписано в печать _______________ Формат 60х84 1/16. Бумага писчая. Печать на ризографе. Печ. л. 1,0 Тираж 100 экз. Заказ

Издательство УГГУ

620144, г. Екатеринбург, ул. Куйбышева, 30

Pages:     | 1 ||






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»