WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 |   ...   | 2 | 3 ||

[Л7] Reitzer L.J., Wice B.M., Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells // J. Biol. Chem. – 1979. - V. 254. – P.2669-2676; Yudkoff M., Nelson D., Daikhin Y., Erecinska M. Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle // J. Biol. Chem. - 1994. – V. 269, N.44. – P. 27414-27420.

[Л8] Cronan J.E., LaPorte D. Tricarboxylic acid cycle and glyoxylate bypass // E.coli and Salm.typhimurium: Cellular and Molecular Biology. - ASM Press, 1996. - P.206-216.

[Л9] Kornberg H.L. and Krebs H.A. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle // Nature. – 1957. - V. 179. - P.988–991.

[Л10] Temple A.R. Acute and chronic effects of aspirin toxicity and their treatment // Archives of Internal Medicine. – 1981. – V. 141. – P. 364-369.

[Л11] Prescott L.F. Effects of non-narcotic analgesics on the liver // Drugs. – 1986. – V. 32. - P. 129-147.

[Л12] Fromenty B., Pessayre D. Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity // Pharmacological Therapeutics. – 1995.- V. 67. – P. 101-154.

[Л13] Vessey D.A., Hu J., Kelly M. Interaction of salicylate and ibuprofen with the carboxylic acid: CoA ligases from bovine liver mitochondria // Journal of Biochemical Toxicology. – 1996. – V. 11. – P. 73-78.

[Л14] Kaplan E.H., Kennedy J., Davis J. Effects of salicylate and other benzoates on oxidative enzymes of the tricarboxylic acid cycle in rat tissue homogenates // Archives of Biochemistry. - 1954. – V. 51. – P. 47-61.

[Л15] Haas R., Parker W.D., Stumpf Jr.D., Erugen L.A. Salicylate-induced loose coupling: protonmotive force measurements // Biochemical Pharmacology. – 1985. – V. 34. - P. 900-902.

[Л16] Bohnensack R., Sel’kov E.E. Stoichiometric regulation in the citric acid cycle. I. Linear interactions of intermediates // Studia biophysica. – 1977. - V.65. – P. 161-173; Bohnensack R., Sel’kov E.E. Stoichiometric regulation in the citric acid cycle. II. Non-linear interactions // Studia biophysica. – 1977. - V.66. – P. 47-63.

[Л17] Ramakrishna R., Edwards J.S., McCulloch A., Palsson B.O. Flux-balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints // Am. J. Physiol. Regul. Integr. Comp. Physiol. – 2001. - V.280, N.3. – P. R695-R704.

[Л18] Дынник В.В., Темнов А.В. Математическая модель окисления пирувата в митохондриях печени. Регуляция цикла Кребса адениновыми и пиридиновыми нуклеотидами // Биохимия. – 1977. - Т.42, вып.6. - С.1030-1044; Дынник В.В., Хайнрих Р., Сельков Е.Е. Математическая модель углеводного энергетического обмена. Взаимодействие гликолиза, цикла Кребса и Н-транспортных челноков при изменении нагрузки ATPазы // Биохимия. – 1980. – Т. 45, вып. 5. – С. 771-782; Дынник В.В. Механизмы регуляции мышечного энергетического обмена при окислении глюкозы и жирных кислот. Математическая модель // Биохимия. – 1982. – Т. 47, вып. 8. – С. 1278-1288; Дынник В.В., Маевский Е.И., Григоренко Е.В., Ким Ю.В. Субстратное ингибирование в цикле трикарбоновых кислот // Биофизика. – 1984. – Т. 29, вып. 6. – С. 954-958.

[Л19] Kohn M.C., Achs M.J., Garfinkel D. Computer simulation of metabolism in pyruvate-perfused rat heart. II. Krebs cycle // Am.J.Physiol. – 1979. – V. 273, N. 3. – P. R159-R166; Джафаров Р.Х. Теоретическое исследование механизмов ингибирования цикла трикарбоновых кислот избытком субстратов. Диссертация на соискание ученой степени кандидата физико-математических наук. - Пущино, 1988; Cortassa S., Aon M.A., Marban E., Winslow R.L., O’Rourke B. An integrated Model of cardiac mitochondrial energy metabolism and calcium dynamics // Biophysical Journal. – 2003. – V. 84. – P. 2734-2755; K.Yugi, M. Tomita. A general computational model of mitochondrial metabolism in a whole organelle scale // Bioinformatics. – 2004. - V. 20. - P. 1795-1796.

[Л20] E.M.T.El-Mansi, G.C.Dawson and C.F.A.Bryce. Steady-state modelling of metabolic flux between the tricarboxylic acid cycle and the glyoxylate bypass in Escherichia coli // Comput.Applic.Biosci. – 1994. – V. 10, N. 3. – P. 295-299; Singh V. K., Ghosh I. Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets // Theoretical Biology and Medical Modelling. - 2006. – V. 3. – P. 27.

[Л21] Walsh K., Koshland D.E. Determination of flux through the branch point of two metabolic cycles // J. Biol. Chem. – 1984. - V. 259, N. 15. – P. 9646-9654.

[Л22] Демин О.В., Горянин И.И., Холоденко Б.Н., Вестерхофф Х.В. Кинетическое моделирование энергетического метаболизма и генерации активных форм кислорода в митохондриях гепатоцита // Молекулярная биология. – 2001. – Т. 35, вып. 6. – С. 1095-1104.

[Л23] Miller S.P. et al. Locations of regulatory sites for Isocitrate Dehydrogenase Kinase/Phosphatase // J. Biol. Chem. – 2000. – V. 275, N. 2. – P. 833-839.

[Л24] Корниш-Боуден Э. Основы ферментативной кинетики. М., 1979.

[Л25] Goryanin I., Hodgman T.C., and Selkov E. Mathematical simulation and analysis of cellular metabolism and regulation // Bioinformatics. – 1999. - V. 15. - P. 749-758.

[Л26] Hooke R. and T.A. Jeeves. “Direct search” solution of numerical and statistical problems // J. of the Association for Computing Machinery. - 1961. – V. 8. – P. 212-229.

[Л27] Waskiewicz D.E., Hammes G.G. Elementary steps in the reaction mechanism of the alpha-ketoglutarate dehydrogenase multienzyme complex from Escherichia coli: kinetics of succinylation and desuccinylation // Biochemistry. – 1984. – V. 23, N. 14. - P. 3136-3143.

[Л28] Amarasingham C.R., Davis B.D. Regulation of alpha-ketoglutarate dehydrogenase formation in Escherichia coli // J. Biol. Chem. – 1965. – V. 240, N. 9. – P. 3664-3668.

Pages:     | 1 |   ...   | 2 | 3 ||






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»