WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 7 |

б)

Рис. 9. Тестовые файлы «TEST 1» (а) и «Видеотест ВМР-192» (б,увеличение).

Измерения параметров файлов, поступавших с объектов испытаний, проводятся с помощью СНМ и телевизионных осциллографов, при этом используется комплект фильтров с параметрами, отвечающими требованиям Рекомендации МСЭ-Р ВТ.1439 (Annex 2, pp. 1-4). В наиболее сложном для осциллографического измерения случае определения отношения сигнал/шум, использовалась методика трансформации в звуковые файлы, изложенная далее в этой главе. Примеры протоколов испытаний даны в Приложении.

С учетом перспектив развития метода, в частности, размещения в файле тестов внутрикадровой и межкадровой (для теста в виде комплекта кадров) компрессии, желательно за счет рационального размещения тест-сигналов обеспечить значительное свободное пространство в растре тестового кадра. Это обеспечено в файле «Видеотест BMP-192», программно созданном для измерений компонентных цифровых и аналоговых трактов, включая возможные переходы сигнала в формат PAL (рис. 9 б).

При его разработке учтены расчеты требуемой точности. Для измерений размаха сигналов, НИ и РУ применены сигналы постоянного по всей длине строки уровня, для измерения АЧХ – отдельные синусоиды также на всей строке, что повышает удельную эффективность их измерения по сравнению с традиционным тест-сигналом («multiburst»). РВ может быть измерено по временным или фазовым соотношениям сигналов яркости и цвета. Отношение сигнал/шум измеряется на наклонных участках с амплитудой перепада 20% для Y согласно Rec. ITU-R BT.1204 и 10% для CR и CB с учетом вдвое меньшей полосы частот. Синусквадратичные импульсы в каналах яркости и цвета с длительностью по ГОСТ 52592-2006 размещены с асинхронным сдвигом относительно моментов дискретизации для усреднения влияния на их форму величины этого сдвига. Амплитуда импульсов в канале яркости уменьшена до 80% с целью избежать ограничения отрицательных выбросов сигнала. Размещены также сигналы I-IV по ГОСТ 18471-83 в форме Y. Общий объем тест-сигналов занимает 1/3 ТВ кадра, т.е. 192 строки. Измерения АЧХ, НИ, К-2Т и отношения сигнал/шум проводятся в каналах яркости и цвета.

Исследовано влияние цифровой компрессии видеосигналов на точность измерения видеопараметров методом УТФ. Имитационным статистическим моделированием показано, что при оптимальной дислокации в тестовом файле строк для измерения отношения сигнал/шум внутрикадровая видеокомпрессия в трактах формирования программ не влияет на точность измерений методом УТФ, а межкадровая в трактах передачи не препятствует измерениям видеопараметров с приемлемой в практике точностью. На рис. 10 и рис. 11 показаны искажения формы импульсов sin2T в наиболее критических случаях и их форма в Р- и В-кадрах после усреднения в тесте.

Рис. 10. Форма импульсов sin2T в В-кадрах.

Рис. 11. Усредненная форма 80 импульсов в Р- и В-кадрах.

При этом в однокадровых вставках тестов в динамические изображения, кодируемые с межкадровым сжатием, помехи в виде эхо-сигналов могут распространяться также на блоки ДКП, соседние с блоками, включающими сигналы переменной амплитуды (рис. 12), что требует особых условий размещения в тестовом кадре строк для измерения отношения сигнал/шум в виде соседних буферных зон с отсутствием значительных перепадов в сигнале. Например, в тесте «Видеотест ВМР-192» эту роль могут играть строки постоянных уровней для измерения РУ и НИ.

Рис. 12. Область помех в однокадровой вставке тест-кадра «Полосы»

в динамический видеосюжет при сжатии MPEG-2 (увеличение).

Проведены разработка и оптимизация метода дистанционной диагностики трактов формирования и передачи телерадиопрограмм. При переходе к дистанционной диагностике целью является устранение потребности в приборном комплекте или выезде на объект испытаний специалиста с набором испытательных устройств.

Поставленная цель достигается на базе метода УТФ передачей на объект тестовых файлов, которые вводятся в одно из компьютерных устройств, работающих в тракте путем обмена аудио-видеосигналами с соседними устройствами (звуковая станция или СНМ). Далее эти файлы проводятся вещателем по тракту по штатной технологии подготовки и выдачи программ. Порядок действий вещателя при этом определяется «Рабочей программой проведения записи материалов», которая составляется испытательным центром на базе структурных схем и перечней оборудования объекта. Конечный файл пересылается в испытательный центр для анализа.

Дистанционная диагностика была эффективно применена для сертификационных испытаний технической базы 26 телерадиокомпаний. Для испытаний звуковых трактов использовалась методика и программа ЭксАТ, теле- и видеокамер – программа «Цвет-1», компонентных и смешанных (с выходом в PAL) видеотрактов – файл «TEST 1», кодеров СЕКАМ – «Test SECAM». Примеры Рабочих программ записи материалов и Протоколов испытаний технической базы телерадиокомпаний приведены в Приложении. Были опробованы различные алгоритмы диагностики. В ходе испытаний подтверждены достоинства метода: резкое снижение затрат, оперативная обратная связь с объектом испытаний и отсутствие потребности испытательного центра в аппаратуре видеозаписи разных форматов.

Оперативность получения результатов испытаний методом дистанционной диагностики может быть существенно повышена путем организации постоянно работающего сетевого сервера для автоматизированной дистанционной диагностики. Абонент данного сервиса имеет в своем распоряжении клиентскую программу, например, ExAT Client и, проведя запись тест-сигнала, может послать зашифрованный результат на сервер и

получить протокол с результатами измерений. В настоящее время разра-

ботана и проходит испытания -версия для программы ЭксАТ.

Разработана методология использования инструментов стандартных звуковых программ, позволяющая проводить измерения полного набора видеопараметров без использования аппаратных средств. Для этой цели фрагменты измеряемого файла, соответствующие строке изображения, преобразуются специально разработанной программой “Bmp2Wave” в звуковой файл, параметры которого измеряются с помощью широкого набора инструментов звуковой программы. На рис. 13 а,б показаны этапы измерений неравномерности АЧХ и НИ.

Рис.13 а,б. Измерения видеопараметров звуковой программой. Искомые значения отображаются индикатором уровня (справа).

Выявлена возможность определения локализации В-кадров динамических телевизионных изображений с цифровой компрессией без доступа к оригиналу изображения путем анализа периодичности их статистических параметров. Это достигается сравнением энтропии в последовательности восстановленных после компрессии кадров видеосюжета посредством вычисления коэффициента сжатия объема кадровой информации при архивации либо относительной интенсивности высокочастотных компонент видеосигнала (рис. 14).

Рис. 14.  Гистограмма интенсивности ВЧ компонент

восстановленных кадров.

Минимумы соответствуют В-кадрам при сжатии.

Таким образом, в главе 3 представлена разработка специального математического и программного обеспечения систем обработки и анализа информации и принятия решений на основе проведенной разработки алгоритмов извлечения информации из радиосигналов при наличии помех. Для ряда задач использована также визуализация, трансформация и анализ информации на основе компьютерных методов ее обработки.

В четвертой главе излагаются результаты исследования и разработки узлов новых телевизионных устройств с целью повышения качества передачи информации, а также разработка радиотехнического устройства для использования в отрасли вещания.

В первом разделе главы приведены работы, проведенные автором в ходе создания и внедрения в серийное производство студийного видеомагнитофона 2-го поколения. Приведены расчеты эффективности магнитной видеоголовки (ВГ) в зависимости от частотных свойств материала сердечника и ширины рабочего зазора. Показано, что эффективность ВГ растет с увеличением не только вещественной составляющей проницаемости магнитного материала сердечника, но и модуля проницаемости и тангенса угла потерь, что позволило определить оптимальные параметры материала ВГ. Разработана и реализована методика измерения эффективной ширины субмикронных рабочих зазоров видеоголовок с точностью ±15 нм, что находилось далеко за пределами разрешения оптических средств измерений и требовало анализа сигналов ниже уровня шумов (рис. 15).

а)

б)

с)

Рис. 15. а) спектрограмма сигнала воспроизведения типичной ВГ;

б) при хорошей форме зазора различим 4-й щелевой максимум;

в) точность метода – интервал частотных меток соответствует разности ширины зазора 30 нм.

Чувствительность методики основана на накоплении данных на фоне шумов спектральным анализом э.д.с. воспроизведения измеряемой ВГ записанного тест-сигнала сканируемой частоты. Результаты измерений показали важную для практики зависимость различия между эффективной и геометрической шириной рабочего зазора от материала сердечника и технологии его изготовления. Применительно к особенностям обработки сигналов в канале аналоговой видеозаписи рассчитано оптимальное значение ширины рабочего зазора сердечника.

Приведены расчеты и экспериментально подтверждены результаты анализа шумовых свойств усилителей воспроизведения и их оптимизации. Рассмотрены шумовые свойства усилительного каскада с общим истоком на полевом транзисторе с управляющим p-n переходом при индуктивном характере импеданса источника сигнала в диапазоне средних частот. Определен коэффициент шума усилителя в зависимости от параметров вращающегося трансформатора, рабочей полосы частот и индуктивности ВГ. Показано, что оптимальная индуктивность источника соответствует отношению резонансной частоты входной цепи к верхней частоте рабочей полосы около 0,7 и слабо изменяется в зависимости от добротности источника и тока затвора. Рассчитаны и подтверждены экспериментально параметры усилителя воспроизведения видеомагнитофона на биполярных транзисторах с оптимальным соответствием набору разносторонних практических требований.

Проведен и подтвержден измерениями анализ характеристик биморфных пьезопреобразователей (БПП) для видеоголовок автотрекинга. Получены формулы и графики для определения чувствительности, резонансной частоты БПП и наклона видеоголовки в зависимости от основных конструктивных параметров. Полученное соотношение

где a – чувствительность БПП,

 fр - резонансная частота биморфа,

 а - толщина пьезопластин,

d31 - пьезомодуль при прямом пьезоэффекте,

EЮа – модуль упругости пьезокерамики,

– плотность пьезокерамики,

показывает, что произведение чувствительности БПП на его резонансную частоту и толщину примененных пьезопластин есть величина постоянная для данного сорта пьезокерамики. Повышение быстродействия БПП может быть получено переходом от прямоугольной к трапецеидальной форме пластин. Решение задачи нахождения резонансной частоты, проведенное по способу Ритца, дает значение:

fр = 0,323,

где    ; bK, bH – ширина пьезопластины соответственно вблизи свободного и  закрепленного концов.

Эта зависимость в относительных единицах приведена на рис. 16.

Рис. 16. Зависимость относительного повышения резонансной частоты БПП при  переходе от прямоугольной (fП) к трапецеидальной (fТ) форме  пьезопластин

Результаты расчетов позволяют оценить влияние на характеристики БПП также параметров металлических обкладок и прослойки между пьезопластинами. Показана перспективность применения пассивных удлинителей и использования пьезопластин трапецеидальной формы. Результаты расчетов подтверждены проведенными экспериментами и применены в конструкции видеоголовок.

Далее в 4-й главе проведен анализ современного состояния проблемы временного рассогласования изображения и звука в трактах формирования и передачи ТВ программ. Разработана методика эфирных испытаний и проведено исследование состояния вопроса в современном российском вещании, подтвердившее актуальность проблемы. Приведено описание, технические характеристики и сведения о внедрении разработанного измерителя временного рассогласования изображения и звука ИВР-1. Прибор внесен в Госреестр средств измерений и рекомендован к применению в 3-х новых ГОСТах.

В пятой главе представлена разработка системного подхода к обеспечению гарантированного качества предъявления телерадиопродукции.

Разработан базовый алгоритм проблемно-ориентированной диагностики состояния технической базы производства телерадиопродукции, эффективность которого была подтверждена практикой сертификации, позволившей провести диагностику и коррекцию технической базы более тысячи телерадиокомпаний. Совокупность возможных вариантов алгоритма представлена деревом решений на рис. 17.

Рис. 17. Дерево решений для выбора базового алгоритма испытаний

технической базы производства телерадиопродукции

где Х1 – измерения параметров каждой единицы оборудования; Х2 – измерения параметров «конечного качества» сигнала на выходе телецентра; Х3 – блочная проверка объекта; Х4 – проверка параметров на выходе крупного блока без детализации траектории прохождения сигнала по внутренним технологическим цепям; Х5 – проверка всех сочетаний технологических цепей в процессе последовательного прохождения по основным блокам; Х6 – измерение параметров технологических цепей в масштабе отдельных аппаратных с накоплением данных по деградации сигналов в конфигурациях цепей, отражающих реально применяемую технологию формирования и выдачи программ.

Выбор производился экспертной оценкой по совокупности затратных показателей и достоверности результатов степени принадлежности (Хn) терму «высокий» лингвистической переменной «уровень эффективности» вариантов алгоритма как элементов нечеткого множества. В результате сравнения к реализации принимается вариант Х6. В итоге, базовый алгоритм диагностики, выбранный для системы «Телерадио» и отраженный в НД по ее применению, включает следующие основные положения:

Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 7 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»