WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 || 3 | 4 |   ...   | 7 |

1. Разработаны теоретико-методологические основы исследования и управления динамическими свойствами сложных экономических систем, позволяющие синтезировать структуру макроэкономики, обладающей магистральными темпами роста, которые достигаются за счет применения новых методов синтеза оптимальных параметров конечного спроса. Предложенные экономико-математические решения базируется на применении аппарата современной теории оптимального управления и прикладного нелинейного программирования для анализа собственных динамических свойств экономических систем и синтеза высокого качества траекторий переходных процессов, включающего эффективные алгоритмы многопараметрической численной оптимизации, и на программном комплексе, реализующем этот аппарат.

2. Разработан математический аппарат для моделирования, анализа и синтеза желаемых динамических свойств, к которым относятся показатели устойчивости, управляемости, наблюдаемости и чувствительности к вариации параметров управления конечным спросом, влияющих на траектории развития экономических систем и зависящих от собственных чисел и собственных векторов матрицы коэффициентов замкнутой по потреблению модели межотраслевого баланса.

3. Разработаны методы анализа динамики развития макроэкономических систем на основе интегральных индикаторов, которыми являются собственные числа матрицы закрытой модели межотраслевого баланса. Методы отличаются возможностью варьирования всего спектра собственных чисел. Применение индикаторов для прогнозирования развития макроэкономических систем позволяет, анализировать текущее состояние и перспективы развития экономической системы, используя при этом минимальное число параметров.

4. Анализ собственных динамических свойств (СДС) выявил существование трех типов замкнутых систем:

- системы с отрицательным спектром собственных чисел, расположенных целиком в левой части комплексной плоскости, устойчивые в классическом понимании теории систем;

- системы с одним положительным собственным числом, называемые магистральными макросистемами, в которых постоянно сохраняются пропорции валового производства;

- системы с двумя и более положительными собственными числами, в которых присутствуют конкурирующие отрасли и при этом одни отрасли развиваются, а другие характеризуются падающими объемами производства.

5. Предложены методы формирования траекторий сбалансированного развития, позволяющие составлять замкнутые динамические модели межотраслевого баланса, динамические свойства которых являются эталонными для развивающихся экономических систем, что актуализирует постановку и решение задачи преследования, известной из теории дифференциальных игр и общей теории управления (задачи управляемого движения). Наличие эталонных систем с заранее заданными свойствами, позволяет указать цель и направление эволюции произвольной макроэкономической системы, что необходимо для расстановки приоритетов развития национальной экономики и формирования целостной экономической политики.

6. Реализован метод построения эталонной магистрали, основанный на численной минимизации функционала качества собственных динамических свойств экономических систем, результатом которого является матрица замкнутой системы, элементы которой гарантируют постоянное расширение экономики при первоначально заданных не оптимальных и не сбалансированных пропорциях валового производства.

7. Обоснована возможность расчленения неустойчиво развивающихся макросистем на устойчивые подсистемы. Предложен метод, использующий преобразование подобия как средство разделения неустойчивых макроэкономических систем на подсистемы, в которых применимы методы оптимального управления. Использование преобразования подобия позволило разбить исходные неустойчивые макросистемы на подсистемы, в которых возможно применение методов синтеза развитых для устойчивых систем, с целью получения оптимальных параметров конечного потребления и функционирования макроэкономических систем в сбалансированном режиме.

8. Обоснована возможность использования метода построения эталонных систем и траекторий, применяя балансовые модели, в которых матрица капитальных коэффициентов вырождена. Метод основан на представлении дифференциальных уравнений модели в виде системы дифференциально-алгебраических уравнений, алгоритм решения которой позволяет получить эталонные траектории вырожденных моделей макросистем. Данный метод применим к динамическому варианту модели Леонтьева-Форда, с помощью которой учитывались затраты на предотвращение загрязнений, выбрасываемые в окружающую среду с течением времени.

9. Разработана методика расчета оптимальных траекторий переходных процессов в развивающихся макросистемах, основанная на синтезе линейно-квадратичного регулятора, позволяющего сформировать внешнее инвестиционное или импортно-экспортное воздействие на экономику для оптимального достижения траекторий эталонных систем. В отличие от других методик, например u-оптимального управления, применение современных алгоритмов многомерной оптимизации, реализованных в математическом пакете MatLab, позволяет оперировать большим количеством варьируемых параметров, что способствует успешному решению задач с большой размерностью обрабатываемых моделей.

10. Осуществлен синтез коэффициентов матриц прямых материальных и капитальных затрат, а также матриц импортно-экспортного сальдо макроэкономических систем, находящихся в процессе перехода к сбалансированному состоянию, которое достигается путем преследования траекторий эталонных систем. Синтез параметров основан на решении обратной задачи определения матричных коэффициентов по сформированным оптимальным траекториям переходного процесса развития макросистем. Вычисление матричных коэффициентов модели переводит задачу из математической плоскости в экономическую, в связи с чем результаты синтеза могут быть использованы лицами, ответственными за принятие экономических решений с целью достижения их эффективности.

11. Определены критерии чувствительности, устойчивости и управляемости детерминированных динамических моделей макросистем. Критерии чувствительности получены на основе передаточной функции динамической системы и отражают чувствительность самой передаточной функции, частотных характеристик, переходных характеристик, корней характеристического уравнения к варьируемым параметрам модели макросистемы. Устойчивость моделей оценивалась по критерию Михайлова, с помощью которого определялась граница устойчивости, отличающаяся постоянным уровнем ВВП. Теоретически сохранять такое состояние средствами и методами экономического регулирования можно сколь угодно долго, поддерживая постоянный, вышедший на насыщение уровень валовых выпусков, тем самым, заставляя макросистему стабильно функционировать. Управляемость моделей оценивалась с использованием матрицы управляемости специального вида и грамиана управляемости, которые показали, что управление темпами развития макросистем целесообразно проводить с использованием всех отраслей участвующих в формировании ВВП. Рассмотренные критерии увеличивают информативность моделей макроэкономических систем, что необходимо для экономистов-аналитиков, занимающихся тонкой настройкой и анализом производственных планов.

12. Обосновано применение методологии анализа линейных стохастических систем к динамическим межотраслевым моделям, что позволило исследовать статистическую точность, управляемость и проводить оценивание основных параметров макросистем при наличии в них случайных составляющих. Анализ основан на разработанных в теории систем и автоматического управления методах контроля параметров стохастических динамических систем. Стохастический подход для анализа, синтеза и управления моделями макроэкономических систем содержит в себе все преимущества детерминированного подхода и учитывает влияние случайных факторов, тем самым расширяет границы применимости стохастических моделей, которые более адекватно описывают реальную экономическую ситуацию в стране.

13. Разработан и защищен свидетельствами об официальной регистрации программный комплекс, имеющий модульную структуру, в которой реализованы алгоритмы анализа и синтеза параметров многомерных макроэкономических систем. Комплекс содержит набор программных инструментов, позволяющих решать различные задачи планирования и прогнозирования, используя ежегодно публикуемые в статистическом сборнике «Система таблиц «Затраты - Выпуск» России» данные Федеральной службы государственной статистики. Комплекс программ, позволяет проводить математическое моделирование процессов, протекающих в макроэкономических системах, а так же предназначен для проверки адекватности полученных моделей, расчета прогнозных и оптимальных значений параметров моделей и траекторий развития экономических систем.

Научная новизна диссертационного исследования состоит в разработке новых теоретико-методологических положений, математического аппарата и прикладного программного обеспечения, позволяющих прогнозировать и планировать развитие макроэкономических систем по заданным траекториям. Конкретное приращение научного знания заключается в следующем:

- На основе интегральных индикаторов, которыми являются собственные числа и векторы матрицы состояния межотраслевой балансовой модели, предварительно приведенной к нормальной форме Коши, разработаны методы исследования динамики сложных экономических систем. Отличительной особенностью методов является их применимость, как к устойчивым, так и к неустойчиво развивающимся экономическим системам. Использование индикаторов для прогнозирования развития макроэкономических систем позволяет анализировать текущее состояние и перспективы развития производства, варьируя при этом минимальным числом параметров.

- Разработаны методы формирования сбалансированных траекторий устойчивого развития, позволяющие получать замкнутые по потреблению балансовые модели макроэкономики, обладающие так называемыми эталонными динамическими свойствами, что позволяет оценить существующую динамику с точки зрения возможной или эталонной. Наличие эталонных систем с заранее заданными свойствами, позволяет указать цель и направление эволюции произвольной макроэкономической системы, что необходимо для расстановки приоритетов развития национальной экономики.

- На основе линейно-квадратичного функционала качества регулирования, учитывающего затраты на управление, разработана методика реализации оптимального перехода траектории произвольной развивающейся экономической системы к траектории – эталону. Методика основана на синтезе так называемого оптимального экономического регулятора, эффект от работы которого формализуется в виде матрицы коэффициентов, замыкающих открытую модель по потреблению. Процедура замыкания позволяет сформировать необходимое внешнее инвестиционное или импортно-экспортное воздействие на экономику для достижения эталонных траекторий. В отличие от других методик управления имеется возможность корректного перехода к задаче синтеза коэффициентов затрат межотраслевых балансовых моделей.

- Решена обратная задача перехода от формальных параметров регулирования, используемых для преследования эталонных траекторий, к параметрам межотраслевых моделей – матрицам прямых материальных, капитальных и трудовых затрат, которые определяются на основе сформированных оптимальных траекторий переходного процесса.

- Для динамических межотраслевых балансовых моделей определены критерии чувствительности к варьируемым параметрам, устойчивости в развитии и управляемости конечным спросом, позволяющие судить о качестве переходных процессов макросистем, не прибегая к непосредственному интегрированию. Критерии чувствительности получены на основе исследования свойств передаточной функции динамической системы и отражают чувствительность самой передаточной функции, ее частотных и переходных характеристик к варьируемым параметрам модели макросистемы. Устойчивость моделей оценивалась по критерию Михайлова, с помощью которого определялась граница устойчивости, отличающаяся постоянным уровнем валового внутреннего продукта. Теоретически сохранять такое состояние средствами и методами экономического регулирования можно сколь угодно долго поддерживая постоянный уровень валовых выпусков, тем самым заставляя макросистему стабильно функционировать. Управляемость моделей оценивалась с использованием матрицы управляемости специального вида и грамиана управляемости, которые показали, что управление темпами развития макросистем целесообразно проводить с использованием всех отраслей участвующих в формировании ВВП. Рассмотренные критерии увеличивают информативность моделей макроэкономических систем, что необходимо для экономистов-аналитиков, занимающихся более тонкой настройкой и анализом планов.

- Осуществлено с минимальной дисперсией практическое оценивание вектора ВВП в балансовой модели «затраты-выпуск» с наличием в системе случайных колебаний, возникающих под действием непредсказуемо изменяющегося спроса, цен и других экономических факторов.

- Определены оптимальные параметры конечного спроса двух режимов управления макросистемой – возмущенного и невозмущенного. Для возмущенного режима синтезирован закон управления конечным спросом из условия осуществления назначенных траекторий движения по математическому ожиданию из начального состояния в конечное. В невозмущенном состоянии закон управления был сформирован таким образом, что позволял удерживать валовые выпуски в окрестности устойчивого функционирования на определенном стабильном уровне. Стохастический подход для анализа, синтеза и управления моделями макроэкономических систем содержит в себе все преимущества детерминированного подхода и учитывает влияние случайных факторов, тем самым расширяет границы применимости стохастических моделей, которые более адекватно описывают экономическую ситуацию в стране.

- Разработан программный комплекс, предназначенный для решения широкого круга научно-исследовательских, проектных, управленческих, прогнозных задач, использующий макроэкономические данные Федеральной службы государственной статистики, имеющий модульную структуру, в которой реализованы алгоритмы анализа и синтеза параметров многомерных экономических систем.

Pages:     | 1 || 3 | 4 |   ...   | 7 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»