WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     || 2 | 3 | 4 |

На правах рукописи

Лебедев Алексей Геннадиевич

Анализ и МОДЕЛИРОВАНИЕ КОММУТАЦИОННЫХ ПРОЦЕССОВ В

ТРАНЗИСТОРНЫХ ПРЕОБРАЗОВАТЕЛЯХ

Специальность 05.09.12 - Силовая электроника

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата технических наук

Москва 2009

Работа выполнена на кафедре «Промышленная электроника» Московского энергетического института (Технического университета).

Научный руководитель: кандидат технических наук, доцент

Недолужко Игорь Германович

Официальные оппоненты: доктор технических наук, профессор

Розанов Юрий Константинович

кандидат технических наук

Калугин Николай Георгиевич

Ведущее предприятие: ОАО «НПП ЭлТом», Московская обл., Люберецкий р-н, пос. Томилино

Защита диссертации состоится “15” мая 2009г. В 14 часов 00 минут в аудитории Е603 на заседании диссертационного совета Д 212.157.12 при Московском энергетическом институте (техническом университете) по адресу 111250, г. Москва, Красноказарменная ул., дом 13.

Отзывы в двух экземплярах, заверенные печатью организации, просим присылать по адресу: 111250, г. Москва, Красноказарменная ул., дом 14, Ученый совет МЭИ (ТУ).

С диссертацией можно ознакомиться в библиотеке МЭИ (ТУ).

Автореферат разослан “__” _________ 2009г.

Ученый секретарь

диссертационного совета

Д 212.157.12

к.т.н., доцент Буре И.Г.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования.

Расчет режимов работы компонентов не возможен без анализа коммутационных процессов. Особенно важен этот вид анализа для расчетов пиковых значений токов и температуры и вклада коммутационных потерь в общую мощность потерь. В известных работах по ПУ коммутационные процессы или совсем не учитываются или учитываются с помощью упрощенных формул. В большинстве случаев при записи этих формул считается, что токи и напряжения ключей изменяются линейно, паразитные реактивности не учитываются, а времена переключения считаются не зависимыми от режима и берутся из справочных данных, что не соответствует действительности.

В простых схемах (с одним-двумя силовыми ключами) коммутационный анализ возможен при помощи численно-аналитических методов в математических системах, например MathCad (MC). В реальных ПУ коммутационный анализ возможен только с применением автоматизированных систем схемотехнического моделирования, таких как Multisim, Microcap, Orcad и других. Из этих систем Orcad является наиболее популярной и эффективной. В состав системы входят модули PSpice (для моделирования схем), Model Editor (для определения параметров моделей компонентов), Optimizer (позволяющий проводить оптимизацию несложных устройств) и другие.

Вместе с PSpice поставляются встроенные модели компонентов, а в библиотеке PSpice приводятся значения параметров этих моделей для большого числа типов компонентов. Можно сформулировать следующие требования к моделям компонентов: наличие методики определения их параметров по справочным или экспериментальным данным, совпадение характеристик, рассчитанных по моделям с соответствующими справочными или экспериментальными, простота (небольшое число параметров). К сожалению, встроенные PSpice модели компонентов обычно не удовлетворяют этим требованиям. Например, в литературе имеются сведения, что эти модели и их значения параметров не всегда адекватно описывают характеристики компонентов. В последние годы фирмы изготовители вместе со справочными данными на свои компоненты стали публиковать в Интернет усовершенствованные Pspice модели в виде подсхем (вместе с набором параметров). В известной литературе нет сведений о том, насколько адекватно такие модели описывают характеристики компонентов и как определять их параметры. Далеко не для всех типов компонентов имеются такие усовершенствованные модели. Поэтому, тестирование моделей, определение их параметров, модификация модели при необходимости или разработка новых моделей являются актуальными задачами.

На коммутационные потери большое влияние оказывают схемы управления ключами, а также цепи формирования траектории рабочей точки (ЦФТРТ) или снаберы, которые широко используются для уменьшения коммутационных потерь в силовых ключах. Если анализу и расчету схем управления в литературе уделяется достаточно много внимания, то этого нельзя сказать о снаберах. Поэтому разработка методики расчета номиналов элементов снаберов является актуальной задачей.

При моделировании коммутационных процессов в ПУ нужно учитывать влияние температуры. Зависимости параметров компонентов от температуры среды хотя и заложены в Pspice модели, но значения соответствующих параметров не настроены и методика такой настройки не описана. Также, важно учитывать разогрев компонента собственной мощностью (саморазогрев), для чего необходимо иметь соответствующие модели. Некоторые фирмы (например, Infineon) для отдельных типов своих компонентов дают такие модели, однако для остальных типов нужно определять их параметры или строить свои модели и определять параметры по справочным данным.

В процессе PSpice-моделирования коммутационных процессов в реальных ПУ возникают трудности, связанные с тем, что для получения достоверных результатов необходимо проводить расчеты с шагом много меньшим длительности этапов коммутации. С учетом того, что стационарный (установившийся) режим устанавливается в ПУ за время порядка нескольких десятков периодов коммутации (за много сотен периодов при тепловом моделировании), прямое Pspice моделирование может потребовать недопустимо больших затрат машинного времени и оперативной памяти (десятки минут и сотни мегабайт соответственно). В известной литературе отсутствуют сведения о том, как решать такие задачи.

Таким образом, можно заключить, что анализ и моделирование коммутационных процессов в ПУ, в том числе в транзисторных преобразователях напряжения, является актуальной проблемой.

Целью настоящей работы является анализ существующих моделей силовых компонентов, усовершенствование и разработка новых моделей, разработка методики расчета и моделирования коммутационных процессов в транзисторных преобразовательных устройствах.

Задачи исследования:

  • Изучение имеющихся моделей силовых компонентов и выявление их недостатков;
  • Исследование возможностей кусочно-линейных моделей и проведение аналитических расчетов с их применением;
  • Усовершенствование имеющихся и, при необходимости, разработка новых моделей силовых компонентов, в том числе моделей, учитывающих саморазогрев компонентов выделяющейся мощностью;
  • Изучение и разработка методов определения параметров этих моделей, определение параметров моделей всех рассмотренных видов;
  • Расчет коммутационных процессов в диодных и транзисторных ключах с резистивной и индуктивной нагрузками, учет влияния паразитных параметров;
  • Расчеты коммутационных процессов (в том числе определение потерь мощности) в практических схемах преобразователей напряжения, разработка методики таких расчетов.

Методы исследования. Для решения поставленных задач использовались следующие методы математического и схемотехнического анализа.

Для определения параметров математических моделей компонентов применялась математическая система МathCad, пакеты Model Editor и Optimizer системы Orcad. Использовались также встроенные в МС алгоритмы для решения систем дифференциальных уравнений, использовалось численное обращение операторных выражений для расчета параметров тепловых цепей. При схемотехническом моделировании (в том числе при анализе коммутационных процессов) использовался пакет PSpice системы Orcad.

Достоверность полученных результатов определяется применением известных компьютерных систем MathCad и Orcad, и подтверждается совпадением расчетных, справочных и экспериментальных характеристик.

Научная новизна работы:

  • Проведенный анализ кусочно-линейных моделей позволил разработать методики определения динамических параметров моделей компонентов при помощи системы MathCad по справочным характеристикам;
  • Предложена методика определения параметров модели тепловой цепи двумя методами: с помощью системы Mathcad и программы параметрической оптимизации Optimizer;
  • Предложена методика численно-аналитического расчета коммутационных процессов в силовых ключах, в том числе с учетом влияния паразитных индуктивностей;
  • Усовершенствованы нелинейные модели диода, БТ, МДПТ и БТИЗ. Эти модели использованы для расчетов коммутационных процессов в ключах при помощи системы MathCad.

Практическая значимость работы:

  • Предложенные Pspice-модели диода, БТ, МДПТ, БТИЗ позволяют более адекватно проводить схемотехническое моделирование транзисторных преобразователей;
  • С помощью установки, созданной на кафедре «промышленной электроники», получены экспериментальные статические и переходные характеристики некоторых экземпляров МДПТ и БТИЗ и предложена методика определения параметров моделей по этим характеристикам;
  • Предложенная методика теплового PSpice-моделирования силовых ключей и схем позволяет проводить расчет средней и пиковой температуры с учетом эффекта саморазогрева;
  • Разработанная методика определения динамических и статических потерь в компонентах была использована при моделировании двух узлов ключевого источника питания (200W Demoboard фирмы Infineon): стабилизатора напряжения с синхронным выпрямлением и корректора коэффициента мощности.

Внедрение результатов работы. Полученные в ходе диссертационной работы результаты (методики определения параметров моделей силовых компонентов и методики расчетов статических и динамических потерь в компонентах) используются в учебном процессе в дисциплинах «Ключевые источники электропитания», «Анализ дискретных схем», а также при выполнении студентами курсовых расчетов и дипломных проектов.

Результаты работы (расчет тепловых цепей, методы измерения коммутационных потерь) используются при разработке источников вторичного электропитания на предприятие ООО «НПП ЭлПром» (г. Томилино).

Апробация работы. Основные результаты работы отражены в двух докладах на восьмой и одиннадцатой научно-технических международных конференциях студентов и аспирантов по направлению «Радиоэлектроника, электротехника и энергетика» в 2001-2004гг. (МЭИ).

Публикации. По результатам диссертационного исследования опубликовано девять печатных работ.

Положения, выносимые на защиту:

  • Усовершенствованные Pspice модели диодов, БТ, МДПТ, БТИЗ;
  • Методики определения параметров существующих и усовершенствованных моделей;
  • Методики расчетов коммутационных процессов на примере практической схемы ключевого источника питания (КИП) «200W_SMPS_DemoBoard».

Структура и объем диссертации. Диссертационная работа состоит из введения, шести глав с выводами к ним, заключения, списка литературы и пяти приложений. Основной текст работы изложен на 195 страницах машинописного текста и включает 160 рисунка и 34 таблицы. Список литературы содержит 89 источников. Объем приложений составляет 99 страниц.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулированы цель и задачи исследования, научная новизна работы и практическая ценность проведенных исследований.

В первой главе рассмотрены различные модели диодов и методы определения их параметров.

Современные диоды с точки зрения динамики выключения можно разделить на три подгруппы: ШД - диоды Шотки (и подобные им Sic-диоды), РВД - диоды с резким восстановлением обратного сопротивления (кривая 1 на рис. 1), ПВД - диоды с плавным восстановлением обратного сопротивления (кривая 2 на рис. 1). Инерционность ШД характеризуется емкостью перехода и зависимостью ее от напряжения (приводятся в справочных данных). Инерционность РВД и ПВД помимо емкости характеризуется в справочных данных временем восстановления Trr (рис.1) и зарядом Qrr (площадь до Trr на рис.1). В справочнике не всегда указывается, к какой группе восстановления относится конкретный тип диода. Диоды ПВД и РВД описываются различными моделями, поэтому важно определять их группу по приводимым в справочнике параметрам Qrr и Trr.

Для приближенных и аналитических расчетов в простых схемах применяется однозвенная кусочно-линейная модель диода, описанная в литературе. Эта модель годится для диодов, относящихся к группе ШД и РВД. Статические параметры КЛМ определяются сравнительно просто, нелинейная емкость диода описывается степенной аппроксимацией и ее параметры (Cjo, M, Vj) также определить не сложно. Трудности возникают при определении динамического параметра Tt. Анализ процесса выключения диода при линейно спадающем токе по КЛМ позволил получить формулу (1)

Для проверки и определения диапазона применимости КЛМ использовалась нелинейная модель, с помощью которой рассчитывалось выключение. Параметр Tt тот же, что и для КЛМ. Выключение по КЛМ и НМ достаточно хорошо совпадают.

Для моделирования ПВД используются двухзвенные КЛМ и НМ. Следует отметить, что при верно определенных параметрах, двухзвенная модель годится как для диодов, относящихся к группе ПВД, так и РВД. Модель позволяет учесть рассасывание заряда после этапа Ta на этапе Tb, с помощью двух накопителей, обменивающихся зарядами между собой. На основе анализа, проведенного с помощью КЛМ, была разработана методика определения динамических параметров T1, T12, T21 и произведено определение параметров для семи типов диодов, включая обратные диоды МДПТ.

В качестве примера эффективности двухзвенной модели на рис.2 - 3 приведены результаты расчетов параметров выключения диода HF08TB60 (относится к группе ПВД) по однозвенной и двухзвенной КЛМ.

Pages:     || 2 | 3 | 4 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»