WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 |   ...   | 6 | 7 || 9 | 10 |

0.1

0.0019 (2)

0.007 (2)

0.002 (2)

Примечание: (1) – Зенин, Белоусова, 1988; ВОДА.., 2004; (2) – Коваль и др., 2003

Таблица 14. Средние значения отношения содержания нормируемых элементов к их ПДК в воде водохранилищ Ангарского каскада

Иркутское

Область переменного подпора

Братское

Усть-Илимское

0.057

0.335

0.11

0.063

Опыт исследования водохранилищ показал, что основная масса тяжелых металлов накапливается в донных отложениях. В настоящее время существует несколько подходов в изучении степени загрязнения тяжелыми металлами донных отложений водоемов. Наиболее распространенным в практике геохимических исследований окружающей среды в нашей стране является определение коэффициентов концентрации, подсчитанных по отношению к геохимическому фону. Используется и коэффициент обогащения, который показывает во сколько раз концентрация ТМ в донных отложениях выше кларка в литосфере [Сает и др., 1990].

По нашему мнению, наиболее информативной является схема, основанная на использовании классов геоаккумуляции (игео-классов) по G. Мюллеру [Mueller, 1979] и дополненная Н.В.Коломийцевым с соавторами [Коломийцев и др., 1999], В.Т. Трофимовым и Д.Г. Зиллинг [Трофимов, Зиллинг, 2002] величиной техногенной нагрузки на донные отложения водных экосистем. Игео-класс (I-geo) или класс геоаккумуляции определялся по уравнению:

I-geo, i = Log 2 (Ci / 1,5 Bi),

где Ci – измеренная концентрация i-го металла в донных отложениях; Bi – геохимический фон элемента; i изменяется от 1 до n.

Класс геоаккумуляции позволяет относить донные отложения к определенному классу качества и составлять карты загрязнения донных отложений каждым металлом отдельно. Анализ игео-классов тяжелых металлов в осадках и создание на их основе серии карт позволили нам дать характеристику уровня загрязнения и техногенной нагрузки на рассматриваемые водоемы (табл. 15).

Таблица 15. Уровень загрязнения тяжелыми металлами и техногенная нагрузка на водохранилища Ангарского каскада

Водохранилище

Уровень загрязнения донных отложений

Техногенная нагрузка

Экологическая зона водных экосистем. Класс состояния донных осадков

Иркутское

Незагрязненный

Слабая (малоопасная)

Зона нормы. Удовлетворительное (благоприятное) состояние

Братское

Незагрязненный

Слабая (малоопасная)

Зона нормы. Удовлетворительное (благоприятное) состояние

Усть-Илимское

Незагрязненный

Слабая (малоопасная)

Зона нормы. Удовлетворительное (благоприятное) состояние

Донные отложения водохранилищ Ангарского каскада загрязнены тяжелыми металлами в основном на уровне нулевого и редко – первого игео-классов, что позволяет отнести их к незагрязненным осадкам, имеющим слабую (малоопасную) техногенную нагрузку по металлам. В соответствии с классификацией В.Т. Трофимова и Д.Г. Зилинга [Трофимов, Зилинг, 2002] водные экосистемы водохранилищ Ангарского каскада находятся в зоне экологической нормы.

Малоопасную техногенную нагрузку создают на Иркутском водохранилище Ni-Mn, на Братском – Zn-Ni-Pb-Mn-V, на Усть-Илимском – Cu-Ni-Mn-V. Как видим, в донных отложениях водохранилищ каскада неизменно присутствуют никель и марганец. В осадках Братского и Усть-Илимского водохранилищ к ним присоединяется ванадий. Специфическими же для Братского водохранилища становятся цинк и свинец, для Усть-Илимского – медь.

На общем фоне незагрязненных донных отложений водохранилищ несколько выделяются область переменного подпора и Верхнеангарский район Братского водохранилища где характерным является сочетание слабой и умеренной техногенной нагрузок, создаваемых тяжелыми металлами, т.е. Верхнеангарский район находится в зоне нормы, а область переменного подпора уже может быть отнесена к зоне риска (рис. 9).

В области переменного подпора до г. Свирск в ассоциацию элементов, формирующих слабую техногенную нагрузку, входят Hg, Pb, Co, Mo, Ni, V, Cu. Умеренную техногенную нагрузку на донные отложения создают Zn, Mn, Cr. По величине удержания тяжелые металлы условно можно разделить на 3 группы [Карнаухова, 2007].

В первую группу входят слабые водные мигранты – молибден, свинец и хром, а также железо, фосфор и органическое вещество. Для них характерны очень высокие значения потери при прохождении через фильтр. Распределение свинца в донных отложениях показано на рис. 10. Вторую группу составляют Mn, Cu и Zn, являющиеся хорошими мигрантами. В третью группу входят слабые водные мигранты – Ni, V (табл. 16).

Таблица 16. Удержание элементов в маргинальном фильтре (МФ) р. Ангары

Группы элементов

1

2

3

P

Mo

Pb

ОВ

Cr

Fe

Mn

Cu

Zn

V

Ni

Усолье-Сибирское-Свирск

21.6

48.9

18.8

62.0

72.7

16.7

4.1

47.5

12.0

35.0

18.0

Свирск-Середкино

78.4

51.1

74.2

28.2

14.5

66.6

65.2

8.3

42.6

16.4

5.0

Общие потери в МФ

100

100

93.0

90.2

87.2

83.3

69.3

55.8

54.6

34.4

23.0

Условные обозначения:

1 – слабая техногенная нагрузка;

2 – умеренная техногенная нагрузка по

1 элементу и слабая по 4-6 элементам;

3 –- умеренная техногенная нагрузка по 2-3 элементам и слабая по 3-4-6 элементам

Рис. 9. Картосхема техногенных нагрузок тяжелых металлов на донные отложения области переменного подпора и Верхнеангарский район Братского водохранилища в масштабе 1:500 000

Условные обозначения:

1 – 10-20;

2 – 21-30;

3 – 31-40;

4 – 41-50

Рис. 10. Картосхема распределения свинца (мг/кг) в донных отложениях области переменного подпора и Верхнеангарского района в масштабе 1:500 000

Важным моментом в функционировании любой водной системы является присутствие в ней азота и фосфора. Эти биогенные элементы служат основной причиной эвтрофирования водоемов Биогенная нагрузка и процессы эвтрофирования связаны с количественными характеристиками потоков биогенных веществ (в первую очередь фосфора и азота), которые изменяются под влиянием хозяйственной деятельности. Основными составляющими приходной части баланса фосфора и азота в водохранилищах Ангарского каскада являются поступления от размыва пород береговой зоны, вынос с земель сельскохозяйственного назначения, поступление в составе речного стока и из вышерасположенного водоема, с промышленными и хозяйственно-бытовыми стоками, сбрасываемыми непосредственно в водохранилища, с атмосферными осадками, выпадающими на зеркало водохранилищ.

В Иркутское водохранилище основная масса фосфора поступает из озера Байкал. Главными источниками поступления элемента в Братское водохранилище служат размыв пород береговой зоны (49%) и вынос с земель сельскохозяйственного назначения и дачных участков (41.7%). Основное питание фосфором Усть-Илимского водохранилища происходит в результате поступления из Братского водохранилища. Наибольший вклад в поступление азота в Иркутское водохранилище дают вынос с земель сельскохозяйственного назначения и дачных участков (64.9%) и поступление из Байкала (20.9%). Лидирующим источников поставки азота в Братское водохранилище служат абразионные берега (87.5%). Основное поступление азота в Усть-Илимское водохранилище происходит в составе абразионного материала, выноса с земель сельскохозяйственного назначения и сброса из Братского водохранилища (примерно в равных соотношениях).

Оценка запаса биогенных элементов и скоростей их накопления в водохранилищах Ангарского каскада нами была оценена по результатам прямых неоднократных измерений. Дополнительно проводились расчеты по формулам Диллона-Риглера [Dillon, Rigler, 1974], Диллона [Dillon, 1975] и Фолленвайдера [Vollenweider, 1975]. Расчетные данные дают вполне удовлетворительную сходимость с прямыми натурными наблюдениями. В зависимости от количества азота и фосфора, поступающих и удерживаемых водохранилищами, находится их трофический уровень. По величине фосфорной нагрузки Фолленвайдер [Vollenweider, 1975; Dillon, 1975] выделяют трофический уровень водоема.

Большая часть удерживаемого фосфора в Иркутском водохранилище находится в воде, в Братском и Усть-Илимском водохранилищах – накапливается в донных отложениях. В настоящее время в Европе приняты концентрации биогенов, которые создают благоприятные условия для «цветения» водоемов, составляющие для Nобщ и Pобщ 0,3 и 0,01 мг/л соответственно [Хендерсон-Селлерс, Маркленд, 1990]. Для сохранения олиготрофного статуса водоема содержание общего фосфора в воде не должно превышать 0,01 мг/л, а мезотрофного статуса – 0,02 мг/л [Vollenweider, 1975].

Содержания Nмин и Pмин в воде водохранилищ Ангарского каскада составляют примерно половину концентраций Nобщ и Pобщ [Карнаухова, 1998, 2008]. Самые низкие значения биогенов в воде характерны для Иркутского водохранилища и соответствуют статусу олиготрофного водоема. Низкая как фосфорная, так и в целом биогенная нагрузка на Иркутское водохранилище также указывает на его олиготрофный уровень (табл. 17). Анализ рекомендуемых величин допустимой биогенной нагрузки на водоемы [Оуэнс, 1977; Мартынова, 1984] позволяет нам считать, что Иркутское водохранилище имеет допустимую нагрузку и находится вне зоны сильного антропогенного влияния.

Таблица 17. Коэффициенты удержания и биогенная нагрузка (г/м2/год) на водохранилища Ангарского каскада

Водохранилище

Фосфор

Азот

КУ

БН

КУ

БН

Иркутское

0.32

0.0061

0.23

0,019

Братское

0.64

7.973

0.97

216.67

Усть-Илимское

0.58

2.647

0.52

41,94

Примечание: КУ – коэффициент удержания; БН – биогенная нагрузка

Содержание в водной толще как минеральных форм, так и общего азота и фосфора в Братском водохранилище, а также опасный уровень биогенной нагрузки указывают на высокую степень антропогенного воздействия на данный водоем и его эвтрофный статус. По концентрации в воде биогенов, коэффициенту удержания и биогенной нагрузке Усть-Илимское водохранилище также может быть отнесено к водоемам, испытывающим значительное антропогенное влияние, имеющему эвтрофный статус.

ЗАКЛЮЧЕНИЕ

Pages:     | 1 |   ...   | 6 | 7 || 9 | 10 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»