WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 |   ...   | 5 | 6 || 8 | 9 |   ...   | 10 |

Характерным в распределении фосфора в осадках водохранилищ Ангарского каскада является связь с условиями седиментации, о чем свидетельствует явная приуроченность элемента к определенным морфодинамическим зонам. Распределение содержания фосфора в донных отложениях согласуется с распределением органического вещества и железа и также зависит от гранулометрического состава осадков. По водохранилищам наименьшая средняя концентрация фосфора приходится на донные осадки Иркутского водохранилища, наибольшая – на осадки Братского водохранилища.

Преимущественно механическая миграция химических элементов создает в зоне осадкообразования в водохранилищах Ангарского каскада геохимический фон в виде средних и довольно низких содержаний микроэлементов (табл. 11).

Таблица 11. Содержание тяжелых металлов в донных отложениях водохранилищ Ангарского каскада, мг/кг

Элемент

Водохранилище

Иркутское

Братское

Усть-Илимское

Cr

65.0

130.0

75.6

Ni

38.0

74.0

40.0

Zn

40.0

90.0

40.0

Cu

8.0

29.0

26.0

Pb

16.0

27.0

21.0

V

38.0

96.0

91.0

Co

3.0

17.0

38.1

Mn

430.0

500.0

530.0

Основные содержания микроэлементов в осадках водохранилищ Ангарского каскада значительно ниже кларковых содержаний в литосфере. По сравнению с другими водохранилищами и природными водоемами донные отложения исследуемых нами водохранилищ довольно бедны микроэлементами. Однако по содержанию меди и кобальта осадки в настоящее время уже превосходят концентрации этих элементов в осадках озера Байкал.

Для донных отложений Иркутского и Усть-Илимского водохранилищ характерны нижефоновые концентрации цинка. Выше фона накопление цинка отмечается в донных отложениях Братского водохранилища, что имеет различные причины. Так, в области переменного подпора цинк имеет явно техногенное происхождение. В Балаганское расширение цинк поступает как из области переменного подпора, так и из материала абразии в основном в составе роговой обманки, магнетита и биотита, которые в повышенных концентрациях находится в породах верхоленской свиты кембрия и их карбонатном цементе. Гидрокарбонатный состав воды благоприятствует переходу цинка в осадки. На большей части Балаганского расширения вышефоновое содержание цинка присутствует в осадках в виде отдельных пятен в глубоководной зоне, составляя 91-130 мг/кг.

Наибольшее содержание свинца отмечается в донных отложениях Братского водохранилища, наименьшее – в осадках Иркутского водохранилища, что почти соответствует количеству металла в осадках озера Байкал. В донных отложениях водохранилищ содержание элемента составляет 16-71 мг/кг [Карнаухова и др., 1988]. Зависимости содержания свинца от гранулометрического состава осадка проследить не удалось. Не наблюдается такая связь и в осадках природных водоемов, что исследователями объясняется отсутствием способности металла накапливаться в определенном классе осадков [Игнатова, Чудаева, 1983].

После осаждения свинец довольно прочно по сравнению с другими элементами закрепляется в донных отложениях и при нарушении структурных связей в результате механического воздействия на осадок переходит во взвесь, а затем довольно быстро выпадает в осадок снова. В качестве примера показано распределение свинца в воде и донных отложениях Балаганского расширения Братского водохранилища (рис. 8).

Рис. 8. Карты-схемы распределения свинца в поверхностном (А) и придонном (Б) горизонтах воды, донных отложениях (В) в Балаганском расширении Братского водохранилища в масштабе 1:1 000 000

Условные обозначения: Вода (мкг/л): 1 – < 0,1; 2 – 0,1- 0,2; 3 – 0,2-0,3.

Донные отложения (мг/кг): 1 – < 15; 2 – 15- 25; 3 – 25-35.

Медь широко представлена в осадках водохранилищ Ангарского каскада. Среднее значение количества меди в донных отложениях исследуемых нами водохранилищ одного порядка с осадками водохранилищ Днепровского каскада (28 мг/кг), что заметно ниже, чем в осадках природных пресноводных водоемов. Элемент накапливается во всех типах донных отложениях и во всех морфодинамических зонах водохранилищ Ангарского каскада. Медь связана с пелитовой фракцией осадков, при увеличении их дисперсности возрастает количество меди, поэтому элемент в большей мере тяготеет к отложениям глубоководной зоны водоемов. Скачок роста содержания меди происходит при переходе от мелкоалевритовых илов к алевритово-глинистым, что связано с высокой миграционной способностью элемента.

Физико-географические условия (обстановки осадконакопления) определили литолого-геохимическую дифференциацию донных отложений, проявившуюся в поглубинной вертикальной поясности осадочного материала в исследуемых водохранилищах. Основными морфодинамическими зонами осадконакопления являются прибрежная отмель, подводный склон прибрежной отмели, затопленная терраса, затопленное русло реки. В соответствии с вертикальной поясностью для каждой зоны специфичны своя размерность частиц осадочного материала, ассоциации минералов и геохимические поля. Методом «идеальных профилей», предложенным Н.М. Страховым [Страхов, 1962] нами были составлены обобщенные фациальные профили, характеризующие участки с наиболее размываемыми берегами, сложенными основными петрографическими типами пород рассматриваемого региона, представленными аргиллитами, песчаниками и суглинками.

Четвертое положение. Геоэкологическое состояние водохранилищ Ангарского каскада отражают донные отложения, которые являются наиболее стабильным и представительным показателем антропогенного воздействия

С момента зарегулирования Ангары и создания каскада водохранилищ стали происходить изменения в режиме функционирования реки, проявившиеся в изменении гидрологического, седиментационного, геохимического и биологического режимов, что привело к неустойчивому экологическому состоянию водной системы. На фоне таких изменений интенсивная хозяйственная деятельность как на водосборе, так и в пределах водных объектов приводит к усилению антропогенной нагрузки на водохранилища и изменению их геоэкологического состояния. Для выявления масштабов загрязнения водохранилищ Ангарского каскада, а также возможных путей снижения антропогенных нагрузок необходима оценка геоэкологического состояния водоемов.

Донные отложения водохранилищ являются активными накопителями загрязняющих веществ, в том числе и таких как тяжелые металлы и биогенные вещества. В донных отложениях заключена полная информация обо всех временных изменениях геоэкологического состояния водохранилищ. При геоэкологической оценке состояния водоемов, как природных, так и искусственных, наиболее приемлемыми показателями донных отложений рекомендуются следующие: концентрации тяжелых металлов для выявления уровня техногенной нагрузки, общий фосфор и биогенная нагрузка для определения стадии эвтрофирования [Моисеенко, 1998; Моисеенко и др., 2006; Даувальтер, 1998; Курзо, 2002].

Геохимические мобильность и динамичность тяжелых металлов делают возможным их нахождение во всех элементах природной среды. Для этих элементов характерно высокое антропогенное поступление в поверхностные воды, что приводит к перемещению металлов на значительные расстояния от источника и накопление в водоемах. Активными накопителями являются искусственные водоемы, к числу которых относится и водохранилища Ангарского каскада. Поступившие в водохранилища тяжелые металлы в результате геохимической миграции рассеиваются, концентрируются и частью сбрасываются в нижний бьеф каждого водохранилища (табл. 12).

Таблица 12. Распределение тяжелых металлов в водохранилищах Ангарского каскада (%)

Составляющие

Водохранилище

Иркутское

Братское

Усть-Илимское

Донные отложения

2.4

91.6

75.0

Содержание в воде водохранилища

14.7

5.3

11.7

Сброс в нижний бьеф

82.9

3.1

13.3

Перемещение и рассеивание происходит в водной среде водоемов. В воде водохранилищ Ангарского каскада находятся элементы 1 и 2 классов опасности, представленные Hg, Pb, Co, Mo, Al (табл. 13).

Санитарно-эпидемиологические правила и нормативы (СанПиН 2.15.980-00) устанавливают, что в случае присутствия в воде водного объекта двух и более веществ 1 и 2 классов опасности, сумма отношений концентраций каждого из них к соответствующим ПДК не должна превышать единицу (табл. 14). Проведенные расчеты показали, что для воды водохранилищ сумма отношений этих элементов к их ПДК не превышает 1.

Таблица 13. Тяжелые металлы в воде водохранилищ Ангарского каскада

Элемент

Класс опасности

ПДК,

мкг/л (1)

Иркутское

Братское

Усть-Илимское

мкг/л

Ni

3

100

5.28

1.36

2.97

Zn

3

5000

1.4

3.5

9.21

Cu

3

1000

7.44

1.4

1.55

Pb

2

30

0.68

0.56

1.20

V

3

100

1.12

1.1

1.0

Co

2

100

0.53

0.78

0

Mn

3

100

15.8

17.04

9.05

Cr

3

50

2.06

0.84

10.2

Al

2

500

3.93

6.8

0.79

Fe

3

300

7

24.1

41

Mo

2

250

1.07

0.4

0.4

Hg

1

Pages:     | 1 |   ...   | 5 | 6 || 8 | 9 |   ...   | 10 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»