WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 || 3 | 4 |   ...   | 7 |
  1. Коэффициент затухания ГКВ в присутствии пленки ПАВ определяется интенсивностью вихревой компоненты ГКВ, которую можно описать как вынужденную продольную волну, возбуждаемую потенциальной компонентой ГКВ. Интенсивность вынужденной продольной волны максимальна при величине упругости пленки, отвечающей условию близости фазовых скоростей продольной волны и ГКВ, что позволяет объяснить квазирезонансный характер зависимости коэффициента затухания ГКВ от упругости. Величины коэффициента затухания ГКВ и соответствующей упругости пленки могут быть определены на основе измерений порога параметрического возбуждения стоячих ГКВ в бассейне, совершающем вертикальные колебания (метод параметрически возбуждаемых волн). Для сликов на морской поверхности - областей пониженной интенсивности коротких ветровых ГКВ, характерно наличие пленок ПАВ с высокой упругостью.
  2. Воздействие пленок ПАВ на ветровые ГКВ (в отсутствие переменных течений) характеризуется уменьшением интенсивности ГКВ в см-диапазоне их спектра, при этом степень гашения ГКВ (контраст) растет с ростом упругости пленки и с уменьшением длины волны и достигает максимума для ГКВ с длинами порядка и менее единиц см. Для ГКВ дм-диапазона возможен эффект усиления волн в присутствии пленки. Физическими механизмами воздействия пленок на ГКВ см-дм-диапазонов являются линейное вязкое затухание ГКВ, а также затухание дм-волн из-за взаимодействия с см-волнами. Особенности зависимости контраста от длины ГКВ могут быть использованы как спектральный признак при радиолокационной диагностике пленок.
  3. Переменные течения формируют неоднородные распределения концентрации ПАВ и упругости пленок на морской поверхности, что приводит к образованию неоднородностей в распределении интенсивности коротких ветровых ГКВ (пленочный механизм воздействия переменных течений на ГКВ). Пленочный механизм может быть доминирующим для ГКВ см-диапазона и приводить к образованию сликов в поле различных динамических процессов - внутренних волн, конвергентных течений, неоднородностей поля ветра. Пленочный механизм, наряду с известными кинематическим механизмом и механизмом модуляции инкремента ветровых ГКВ, позволяет объяснить особенности вариаций спектра ветровых ГКВ в поле переменных течений и проявления этих течений в радиолокационных изображениях морской поверхности.
  4. Сильная нелинейность ГКВ см-дм-диапазонов проявляется в присутствии в спектре волнения мм-диапазона вынужденных компонент (паразитной ряби). Фазовые скорости паразитной ряби соответствуют фазовым скоростям генерирующих их (несущих) ГКВ, а амплитуда ряби квазипороговым образом зависит от амплитуды несущих ГКВ. Данные особенности вынужденных компонент ветровых ГКВ определяют механизмы сильной изменчивости спектра волн мм-диапазона: каскадную модуляции ряби внутренними волнами, гашение пленкой ГКВ мм-диапазона, эффекты изменения доплеровских сдвигов частоты радиолокационных сигналов мм-диапазона, а также усиления модуляции радиолокационных сигналов из-за длинных волн в присутствии пленок ПАВ.

Научная и практическая значимость работы.

Результаты, касающиеся влияния пленок на спектры ветровых ГКВ могут быть использованы при разработке алгоритмов и аппаратуры для обнаружения пленок на морской поверхности, оценке их характеристик и различения на фоне сликоподобных (в частности, ветровых) аномалий. Обнаруженный эффект изменения в сликах доплеровских сдвигов частоты радиолокационных сигналов также можно использовать для целей дистанционной диагностики пленок, в частности, для уточнения величины их упругости. Важную научную и практическую значимость имеет развитый в работе метод измерения затухания ГКВ и полученные с его помощью данные о характеристиках пленок, пленки с измеренными характеристиками могут использоваться как эталонные в экспериментах по дистанционной диагностике сликов, а также для целей калибровки дистанционной аппаратуры.

Результаты исследований динамики пленок и изменчивости спектра ветровых ГКВ в поле переменных течений углубляют понимание механизмов образования сликов на морской поверхности и их связи с внутренними волнами, неоднородными течениями, ветровыми фронтами.

Результаты, касающиеся механизма генерации паразитной капиллярной ряби, а также ее каскадной модуляции в поле внутренних и длинных поверхностных волн могут служить основой для совершенствования моделей ветрового волнения см-мм-диапазонов, что, в свою очередь, необходимо для развития методов дистанционного зондирования и интерпретации данных спутниковых наблюдений морской поверхности. В частности, результаты по каскадной модуляции паразитной ряби можно использовать для более точного определения амплитуды длинных ветровых волн по данным измерений радиолокационной модуляционной передаточной функции.

Полученные в диссертации результаты использовались в следующих исследовательских проектах, выполненных и выполняющихся под руководством автора: в проектах Российского фонда фундаментальных исследований 93-05-08126-а (1993-1995 гг.), 96-05-65087-а (1996-1998 гг.), 99-05-64797-а (1999-2001гг.), 01-05-79035-к (2001г.), 02-05-65102-а (2002-2004 гг.), 03-05-79053-к (2003г.), 04-05-79015-к (2004г.), 05-05-64137-а (2005-2007гг.), 05-05-79045-к (2005г.), 06-05-79018-к (2006г.), 07-05-10030-к (2007г.); Международного научно-технического центра (МНТЦ Р1774, 2000-2001гг.); INTAS (№96-1665 “Organic slicks on the sea surface and their remote sensing”, 1997-1999гг.; №03-51-4987 “Slicks as Indicators of Marine Processes”, 2004-2007гг.; №8014 “Bound waves: dynamics and impact on remote sensing of the sea surface” 2006-2009гг.); INTAS-GMES (“OSCSAR”, “DeCOP”, 2004-2005гг.); INTAS-ESA (“MOPED”, “DEMOSSS”, 2006-2008гг.); а также при участии автора в проектах CRDF Grant Assistant Program RGO-655; ФЦНТП Миннауки РФ (Госконтракт N 40.020.1.1.1171); ФЦП Миннауки РФ “Мировой океан” (2003-2007 гг., госконтракт N 43.634.11.0014), ОФН РАН «Проблемы радиофизики» (2004-2006 гг.), научной школы акад. В.И Таланова (2005-2007гг.).

Апробация результатов работы и публикации.

Основные результаты диссертации докладывались на международных конференциях: Генеральной океанографической ассамблее (Акапулько, Мексика, 1988), Симпозиуме “Взаимодействие океана и атмосферы” (Марсель, Франция, 1993), II Европейской конференции по механике жидкости (Варшава, Польша, 1994), коллоквиуме Евромех №287 ”Поверхностные слики и мониторинг взаимодействия между океаном и атмосферой” (Ворвик, Великобритания, 1997), Международных симпозиумах по наукам о Земле и дистанционному зондированию – IGARSS (Сиэтл, США, 1998; Гамбург, Германия, 1999; Гонолулу, США, 2000; Сидней, Австралия, 2001;Торонто, Канада, 2002), симпозиуме Европейского космического агентства “Совместное использование MERIS/ASAR для наблюдения морских сликов и мелкомасштабных процессов” (Италия, 2003), Международном симпозиуме “Тематические проблемы физики нелинейных волн” (Нижний Новгород, Россия, 2003), Международном американско-балтийском симпозиуме (Клайпеда, Литва, 2004), Генеральных ассамблеях Европейского геофизического общества (Ницца, Франция, 2004; Вена, Австрия, 2006), Международной конференции “Современные проблемы оптики естественных вод” (Нижний Новгород, Россия, 2007);

на российских конференциях:

Всероссийской Юбилейной конференции РФФИ (Москва, 2002), Юбилейной всероссийской научной конференции (10 лет РФФИ) “Фундаментальные исследования взаимодействия суши, океана и атмосферы” (Москва, 2002), Школах по нелинейным волнам (Нижний Новгород, 2004, 2006), Открытых Всероссийских конференциях “Дистанционное зондирование Земли из космоса” (Москва, 2003, 2004, 2006); межведомственных конференциях “Проявления глубинных процессов на морской поверхности” (Н. Новгород, 2003, 2005, 2007);

на приглашеных семинарах:

в Университете Гамбурга (Германия, август, 1990; февраль, 1991; апрель, 2004), в Университете Флоренции (Италия, апрель, 1993; ноябрь, 1998), в Университете Саутгемптона (Великобритания, июнь, 1995; декабрь, 2003), в Военно-морской исследовательской лаборатории (США, Вашингтон, июнь, 1998), в Технологическом центре Винфрича (Великобритания, июль, 1999), в Университете Лиссабона (Португалия, ноябрь, 2000; ноябрь, 2002), в Университете Порту (Португалия, ноябрь, 2000), в Университете Гейдельберга (Германия, январь, 2002), в Университете Осло (Норвегия, апрель, 2007), в ИКИ РАН (Москва, апрель, 2003), а также на семинарах в ИПФ РАН.

Основные результаты диссертации опубликованы в работах [1*- 64*], из них 20 статей в рецензируемых российских журналах, 12 статей в зарубежных рецензируемых журналах и изданиях, 22 работы в трудах конференций, 8 статей в тематических сборниках и 2 препринта.

Личный вклад автора

Содержащиеся в диссертации материалы получены автором самостоятельно, либо под его руководством и при его непосредственном участии. Автору принадлежат постановка задач, организация и руководство всеми натурными и лабораторными экспериментами, а также развитие теоретических моделей (при равном вкладе в работах [1*, 2*, 5*, 8*, 9*]). Автор принимал участие во всех экспериментах, анализе и обработке данных.

Структура и объем работы.

Диссертации состоит из Введения, 5 глав и Заключения. Общий объем 335с., в том числе 144 рисунка и 8 таблиц. Список литературы включает 232 наименования.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во Введении обоснована актуальность работы, сформулированы цель и задачи работы, новизна полученных результатов и положения, выносимые на защиту, кратко изложено содержание диссертации.

Глава 1 посвящена теоретическому и экспериментальному исследованию затухания ГКВ в присутствии упругой пленки, описанию предложенного для анализа характеристик пленок метода параметрически возбуждаемых волн, а также анализу упругих свойств пленок ряда ПАВ. В разделе 1.1 обсуждаются выводы классической линейной теория затухания ГКВ в присутствии упругой пленки, кратко описаны экспериментальные исследования затухания ГКВ. В разделе 1.2, являющимся в значительной мере методическим, рассмотрена линейная гидродинамическая теория затухания ГКВ на поверхности воды, покрытой упругой пленкой. В разделе 1.2.1 дано описание свойств двух известных типов волн на поверхности вязкой жидкости, покрытой упругой пленкой – ГКВ (имеющих потенциальную и вихревую компоненты) и продольных чисто вихревых волн (ПВ), или волн Марангони. Показано, что вихревую компоненту ГКВ можно формально описать уравнением для ПВ с внешней силой, определяемой потенциальной компонентой ГКВ. Для амплитуды вихревой компоненты ГКВ - "вынужденной ПВ" получено выражение вида

, (1)

где Ur и Up - комплексные амплитуды вихревой и потенциальной компонент орбитальной скорости ГКВ на поверхности, и - волновые числа ПВ и ГКВ, определяемые выражениями и,,, - плотность, коэффициент поверхностного натяжения (к.п.н.) и динамическая вязкость жидкости, g – ускорение силы тяжести, Е – упругость пленки, - частота волн. Выражение (1) имеет резонансный вид, однако, поскольку kM комплексно и условие точного резонанса между ГКВ и ПВ (равенство kM и kg) не выполняется, амплитуда возбуждаемой “вынужденной” ПВ остается конечной и имеет максимум |Urmax|=2|Up| при, при этом. В разделе 1.2.2 получено выражение для коэффициента затухания ГКВ вида

(2)

Здесь первое слагаемое описывает затухание ГКВ в жидкости с чистой поверхностью, второе - дополнительное затухание из-за пленки, которое определяется отношением интенсивностей “вынужденной ПВ” и потенциальной компоненты ГКВ. Величинаотвечает максимуму затухания ГКВ при “резонансе” (Е=Е0). Выражение (2) с точностью до малых членов порядка (2k2/)1/2 <<1 согласуется с результатами более формального анализа полного дисперсионного уравнения для волн в вязкой жидкости (см., например, [22, 23]).

В разделе 1.3. представлены лабораторные исследования коэффициента затухания ГКВ с использованием предложенного в работе метода параметрических волн. Рассчитан полный коэффициент затухания ГКВ в бассейне конечных размеров (раздел 1.3.1) с учетом влияния стенок. В разделе 1.3.2 описан метод измерения, основанный на измерении порога параметрического возбуждения ГКВ в бассейне, установленном на вибрирующем основании (при этом к.п.н. определяется из дисперсионного соотношения ГКВ по измерениям их длины волны при заданной частоте ГКВ), оценены ошибки измерения параметрическим методом. Важное преимущество метода – возможность избавиться от ошибок, связанных с неоднородностью пространственного распределения концентрации ПАВ, возникающего из-за средних течений при измерениях для бегущих ГКВ. В разделе 1.3.3 представлены результаты лабораторных измерений коэффициента затухания ГКВ для чистой воды, показано их хорошее согласие с теорией. Приведены результаты измерений коэффициента затухания как функции частоты ГКВ в присутствие мономолекулярной пленки и на основе сравнения их с теорией сделан вывод о возможности восстановления динамической упругости пленки по величине.

Pages:     | 1 || 3 | 4 |   ...   | 7 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»