WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     || 2 | 3 |

На правах рукописи

ДЬЯКОВ Кирилл Владиславович

ТЕХНОЛОГИЯ УСТРОЙСТВА МОНОЛИТНЫХ ПОКРЫТИЙ

ИЗ МАГНЕЗИАЛЬНОГО

БАЗАЛЬТОФИБРОАРМИРОВАННОГО РАСТВОРА

Специальность: 05.23.08 – «Технология и организация строительства»

АВТОРЕФЕРАТ

Диссертации на соискание ученой степени

кандидата технических наук

Челябинск – 2008

Работа выполнена на кафедре «Технология строительного производства» Южно-Уральского государственного университета

Научный руководитель – доктор технических наук, профессор,

член-корреспондент РААСН Головнев С.Г.

Официальные оппоненты: доктор технических наук,

профессор Михайловский В.П.;

доктор технических наук,

профессор Петраков Б.И.

Ведущая организация – ООО «Уральский научно-исследовательский институт строительных материалов» УралНИИстром (г. Челябинск).

Защита состоится 5 декабря 2008 г., в ___ часов на заседании диссертационного совета ДМ 212.298.08 Южно-Уральского государственного университета по адресу: г. Челябинск, пр. им. В.И. Ленина, 76, ауд. 1001.

С диссертацией можно ознакомиться в библиотеке университета.

Автореферат разослан ___ ноября 2008 г.

Ученый секретарь диссертационного совета

доктор технических наук, профессор Трофимов Б.Я.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность. При строительстве и реконструкции зданий и сооружений значительную долю работ занимает устройство монолитных покрытий – выравнивающих стяжек, покрытий полов, швов плит перекрытий, объем применения которых имеет тенденцию к увеличению. Подобная многофункциональность приводит к необходимости применения материалов и технологий, обладающих рядом специфических особенностей.

Существующие смеси на основе портландцемента все чаще не удовлетворяют растущим требованиям, предъявляемым к подобным конструкциям и технологии их устройства.

В этом плане материалы на основе магнезиального вяжущего обладают уникальными свойствами: быстрым твердением, высокой прочностью на сжатие и растяжение, низкой истираемостью, экологической чистотой, сравнительно низкой стоимостью и т.п.

Армирование позволяет увеличить прочность на растяжение, снизить толщину и массу монолитных покрытий. Фибровое армирование придает композиционному материалу совершенно новые свойства, а правильно организованная технология позволяет сократить трудоемкость и улучшить конструкционные характеристики.

Однако не все армирующие волокна, предлагаемые сегодня, соответствуют требованиям, обеспечивающим эффективность дисперсного армирования, а для некоторых типов фибры отсутствует научно обоснованная технология приготовления и укладки смесей на их основе.

Поэтому возникает необходимость в разработке технологии устройства монолитных покрытий, отвечающих современным требованиям, с применением недорогих, но эффективных местных материалов.

Объект исследования – технология устройства фиброармированных монолитных покрытий.

Предмет исследования – свойства магнезиального базальтофиброармированного (МБФА) раствора, параметры технологии фибрового армирования.

Цель диссертационной работы разработка технологии приготовления, транспортирования и укладки МБФА смеси, обеспечивающей повышение конструкционных свойств монолитных покрытий и снижение трудоемкости.

Задачи диссертационной работы:

- провести анализ монолитных покрытий в соответствии с функциональными требованиями, материалами и технологическими этапами их устройства;

- исследовать свойства МБФА раствора для устройства монолитных покрытий в зависимости от состава компонентов и количества фибр.

- изучить свойства базальтовых фибр, подвергающихся технологическому воздействию в смеси, и выявить характеристики т-параметра, учитывающего изменение длины и количества фибр в зависимости от технологии;

- определить влияние технологии фибрового армирования на свойства МБФА раствора через значения т-параметра и установить характер сцепления фибр с матрицей на поверхности раздела с помощью электронной микроскопии;

- установить влияние технологического воздействия на этапах приготовления, транспортирования и укладки МБФА смеси на значение т-параметра;

- разработать технологический регламент, обеспечивающий повышение конструкционных свойств монолитного покрытия и провести производственную апробацию разработанной технологии.

Для решения поставленных задач в работе была реализована схема исследований, представленная на рис. 1.

Научная новизна работы:

- установлено влияние технологического воздействия на этапах приготовления, транспортирования и укладки МБФА смеси на значение т-параметра, учитывающего изменение длины и количества фибр в смеси в зависимости от технологии;

- получены корреляционные зависимости значения т-параметра с удобоукладываемостью и прочностью (снижение удобоукладываемости от 5 до 30% вызывает уменьшение т-параметра с 30 до 16, при изменении т-параметра с 16 до 30 увеличивается прирост прочности на растяжение при изгибе от 10 до 40%) МБФА раствора.

Практическая значимость работы:

- методика выбора технологии устройства монолитного покрытия по значению т-параметра;

- технологический регламент на устройство монолитных покрытий из МБФА раствора;

Внедрение результатов:

Разработанная технология применена специализированной строительной фирмой при устройстве покрытий для промышленных полов в зданиях в г. Челябинске.

Апробация работы:

Материалы диссертации докладывались на ежегодных научно-технических конференциях в Южно-Уральском государственном университете в 2004 – 2007 гг. в г. Челябинске, а также на девятых и двенадцатых академических чтениях Уральского отделения РААСН, проходивших в г. Екатеринбурге в 2004 и 2007 г.

Рисунок 1. Общая схема исследований.

Достоверность полученных экспериментальных данных, аналитических выражений и зависимостей подтверждается достаточным количеством проведенных экспериментов, использованием поверенного и аттестованного оборудования и стандартных методик, применением современных методов математического планирования и обработки результатов исследований.

Публикации. Основные положения представленной работы изложены в трех печатных работах.

Объем работы. Диссертационная работа состоит из введения, пяти глав, основных выводов и списка литературы.

Автор выражает признательность Евсееву Б.А., Пикусу Г.А. и коллективу кафедры «Технология строительного производства» Южно-Уральского государственного университета за помощь в проведении исследований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность работы, представлена научная новизна, достоверность, практическая значимость работы.

В первой главе анализируются требования к конструкции монолитных покрытий, особенности применения различных материалов и технологии устройства фиброармированных монолитных покрытий.

В нормативной и технической литературе нет определения, обобщающего монолитные стяжки, покрытия полов, заделки швов. В связи с этим под понятием «монолитное покрытие» предлагается понимать распространенный в горизонтальном направлении монолитный элемент несущей конструкции здания, воспринимающий различные виды нагрузок и распределяющий их для передачи нижележащим элементам конструкции, а также выполняющий другие функции в зависимости от назначения.

В соответствии с нормативными документами, можно выделить группы требований к монолитным покрытиям: прочность и герметичность, монолитность, горизонтальность и ровность поверхности, необходимая толщина. Кроме того, монолитные покрытия должны быть экологичными, долговечными и технологичными.

Смеси для устройства монолитных покрытий должны обладать достаточной удобоукладываемостью, обеспечивать требуемый темп набора прочности.

Использование при устройстве монолитных покрытий растворных смесей, обладающих, по сравнению с бетонными, лучшей удобоукладываемостью и перекачиваемостью, позволяет, при литьевой технологии, значительно повысить эффективность производства работ. Это достигается за счет снижения мощности приводов смесительного и насосного оборудования, снижения трудоемкости подачи и укладки смеси на 30…35%, возможности получения более тонких монолитных покрытий и более качественных лицевых поверхностей, уменьшения трудозатрат на отделочных работах на 15…20 %.

Смеси на цементной основе, при ряде их положительных свойств не удовлетворяют перечисленным выше требованиям по целому ряду параметров. Это медленный темп набора прочности, склонность к образованию усадочных трещин, недостаточная конечная прочность, низкая удобоукладываемость.

Альтернативой портландцементу при устройстве монолитных покрытий во многих случаях может стать использование в качестве вяжущего местного материала – каустического магнезита. Изделия на его основе обладают рядом уникальных свойств: высокой конечной прочностью (до 80 – 100 МПа на сжатие, 10 – 15 МПа на растяжение при изгибе), быстрым темпом набора прочности (30 – 70% от марочной прочности в первые сутки твердения), огнестойкостью, износостойкостью, относительно малой усадкой, беспыльностью, биостойкостью, стойкостью к агрессивным средам, экологической чистотой. Смеси на основе магнезиального вяжущего обладают высокой подвижностью.

Из ученых и производственников, внесших значительный вклад в исследование магнезиального вяжущего и применение его в строительстве, следует отметить Байкова А.А., Баженова Ю.М., Верещагина В.И., Ваганова А.П., Килессо С.И., Кузнецова А.М., Лапшина П.В., Мчедлова-Петросян О.П., Сореля Ч., Танака Т., Шелягина А.М. и др.

Для обеспечения соответствия готовых монолитных покрытий предъявляемым требованиям, кроме качественных материалов, необходимо правильно организованное и последовательное выполнение всех этапов технологии.

Технологическим процессом, существенно изменяющим конструкционные свойства материала, является армирование.

Расширение области применения фибрового армирования, основанного на принципе равномерного рассредоточения в объеме матрицы армирующих волокон, обусловлено эффектом, который дает этот способ по сравнению с традиционным. Улучшение физико-механических характеристик, снижение толщины монолитных покрытий и исключение операций по креплению арматурных сеток, позволяет уменьшить в 1,5-2 раза трудоемкость и материалоемкость конструкций и на 25-40% – их стоимость.

Учитывая преимущества фибр, как арматуры, а также конструктивные и технологические требования к монолитным покрытиям, можно утверждать, что именно устройство монолитных покрытий является рациональной областью применения фибрового армирования.

Вклад в исследование технологии дисперсно-армированных композиционных материалов внесли отечественные и зарубежные ученые: Бирюкович К.Л., Бирюкович Ю.Л., Бирюкович Д.Л., Волков И.В., Гетун Г.В., Джигирис Д.Д., Евсеев Б.А., Карпинос Д.М., Лобанов И.А., Лысенко Е.Ф., Маджумдар А.Д., Мандель Д.А., Некрасов В.П., Пащенко А.А., Петраков Б.И., Пухаренко Ю.В., Рабинович Ф.Н., Рыбасов В.П., Сербин В.П. и др.

На эффективность дисперсного армирования оказывает влияние отношение модулей упругости материалов фибр и матрицы, количество фибр, химическая стойкость материала фибр по отношению к материалу матрицы, геометрические характеристики фибр (длина, диаметр, форма боковой поверхности), соотношение размеров армирующих волокон с размерами неоднородностей структуры матрицы, – это делает важным вопрос выбора материала фибр.

В настоящее время наиболее широко по сравнению с другими распространены стальные фибры, стеклянные и базальтовые волокна и волокна на основе полипропилена.

Полипропиленовые волокна характеризуются повышенной деформативностью и не могут выполнять роль эффективной рабочей арматуры.

Лучшими показателями в конструкционном отношении обладает стальная фибровая арматура, модуль упругости которой примерно в 6 раз превышает модуль упругости бетона. Однако, затворение магнезиального вяжущего растворами солей (MgCl2, MgSO4) делает затруднительным применение фибр из черного металла, а использование нержавеющей стали значительно повышает стоимость конструкции.

При устройстве монолитных покрытий, высокомодульные минеральные армирующие волокна могут стать альтернативой стали, что позволит экономить металл, снизить массу конструкций, повысить устойчивость к кислотной и электрохимической коррозии.

Тонкие стеклянные и базальтовые волокна диаметром 8-10 мкм по прочности соответствуют высокоуглеродистой холоднотянутой проволоке (1800-2500 МПа), пллотность же в 3,5 раза меньше. Модуль упругости примерно втрое превышает модуль упругости матрицы. Однако производство тонких волокон и объединение их в комплексные нити требует дорогостоящего оборудования. Кроме того, при производстве стекла используется многокомпонентная шихта, что сказывается на стоимости фибр (80 – 100 руб/кг). Для равномерного распределения таких волокон в композиции требуются специальные методы (напыление, контактное формование) и оборудование, повышающие стоимость конструкции.

В то же время, для дисперсного армирования монолитных покрытий вполне могут быть использованы базальтовые грубые волокна, обладающие достаточно высокими механическими показателями (прочность на растяжение – 150 МПа, модуль упругости на 20 % выше, чем у стекла), экологичностью, эффективной технологией получения из однокомпонентного сырья, приводящей к снижению стоимости, составляющей от 25 до 40 руб/кг. При устройстве конструкций, армированных такими волокнами, могут быть использованы стандартные растворосмесители и растворонасосы, широко применяемые в производстве работ отделочного цикла строительства.

В литературе, посвященной дисперсному армированию, вопросам технологии приготовления, транспортирования и укладки смесей, армированных базальтовым грубым волокном, уделено недостаточно внимания. Это определило направление дальнейших исследований.

Во второй главе проведено исследование свойств МБФА раствора для устройства монолитных покрытий: представлены характеристики материалов и описаны методы исследований, изучено влияние процента армирования в зависимости от состава компонентов на удобоукладываемость смеси и на прочность монолитного покрытия. Предложен параметр, учитывающий изменение длины и количества фибр в смеси в зависимости от технологии.

Pages:     || 2 | 3 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»