WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 | 2 ||

,

,.

Дискретная задача, аппроксимирующая (37),(38), имеет вид:

(39)

(40)

,

,,,

(41)

где,,,,,,

.

Для построения оптимального решения применяется метод градиентного спуска. Ограничения учитываются с помощью проекции,,, на допустимое множество. При, =0.9, D=1, r=1, =1, = получено:, -,,.

Аналогично строится решение задачи о нахождении формы выпуклой пространственной фигуры минимальной площади поверхности. Соответствующая ей задача нелинейного программирования сводится к максимизации (39) при ограничениях (40),

(42)

При,=0.9,D=1, r=1,=1,= получено:,.

Построено численное решение задачи о нахождении пространственной выпуклой фигуры максимального объема, аппроксимируемой задачей нелинейного программирования вида: минимизировать функцию

(43)

при ограничениях (40),(41).

При решении данной задачи методом градиентного спуска для, =0.9, D=1, r=1, =1, получено:,,,,,.

Аналогично построено численное решение задачи о нахождении формы выпуклой пространственной фигуры минимального объема. Соответствующая аппроксимирующая задача нелинейного программирования сводится к максимизации (43) при ограничениях (40),(42). При задании следующих значений параметров:, =0.9, D=1, r=1, =1, = получено:,,.

Основные результаты

1.В диссертационной работе экстремальные геометрические задачи формализованы как многомерные задачи оптимального управления с фазовыми ограничениями.

2.Получено аналитическое глобально оптимальное решение в следующих задачах о выпуклых центрально-симметричных фигурах вращения с дополнительным ограничением на ширину:

  • нахождение фигуры максимальной площади поверхности;
  • нахождение фигуры минимальной площади поверхности;
  • нахождение фигуры максимального объема;
  • нахождение фигуры минимального объема.

3.Построено аналитическое глобально оптимальное решение в задачах о нахождении произвольных выпуклых пространственных фигур максимальной площади поверхности и максимального объема без дополнительных ограничений на ширину.

4.Разработан и реализован алгоритм метода внешних штрафных функций для построения оптимального решения в задачах о нахождении формы выпуклых центрально-симметричных фигур вращения максимальной и минимальной площади поверхности с заданными ограничениями на ширину. Исследовано влияние параметров метода и параметров задач на оптимальное решение.

5.Продемонстрирована_эффективность аппроксимации экстремальных геометрических задач задачами нелинейного программирования. Разработаны и реализованы алгоритмы метода градиентного спуска для решения следующих задач:

  • нахождение выпуклых центрально-симметричных экстремальных фигур вращения;
  • построение выпуклых фигур вращения максимальной площади поверхности и максимального объема;
  • нахождение произвольных экстремальных выпуклых пространственных фигур.

6.Показано, что метод градиентного спуска более эффективен при их решении по сравнению с методом внешних штрафных функций. В частности, при решении методом штрафных функций задачи о построении центрально – симметричной фигуры вращения максимальной площади поверхности при выборе параметров: =0.8, D=1, r=1, =1 получено значение отклонения за итераций, при ее решении методом градиентного спуска – за итераций. При решении задачи о минимизации площади центрально-симметричной фигуры вращения методом штрафных функций при =0.8, D=1, r=1, =0.8 получено:, методом градиентного спуска -,.

7.Проведен анализ градиентных методов при решении экстремальных геометрических задач. Показано, что метод Ньютона позволяет получить более точное решение при их решении, если начальная точка, из которой запускается численный процесс оптимизации, находится в некоторой окрестности точки минимума. В качестве такой точки целесообразен выбор решения, полученного методом наискорейшего спуска.

Публикации автора по теме диссертации

в изданиях, рекомендованных ВАК России:

  1. Цветкова Е.Г. Задача о построении выпуклой фигуры вращения, обладающей минимальной площадью поверхности, с заданными ограничениями на ширину // Вестник ТвГУ. Сер. Прикладная математика. 2007. №7. С. 149-161.
  2. Цветкова Е.Г. Решение задачи о построении выпуклого тела вращения максимальной площади поверхности методами нелинейного программирования // Вестник ТвГУ. Сер. Прикладная математика. 2008. №3(10). С. 79-96.

в других изданиях:

  1. Андреева Е.А., Цветкова Е.Г. Оптимальное управление процессом отлова рыбы / Е.А.Андреева, Е.Г.Цветкова // Применение функционального анализа в теории приближений: Сборник научных трудов. Тверь: ТвГУ, 2005. С. 132-144.
  2. Андреева Е.А., Цветкова Е.Г., Савичева Ю.А. Решение экстремальных задач геометрии двойственным методом: Учеб. пособие. Тверь: ТвГУ, 2007.- 180 с.
  3. Цветкова Е.Г. Задача о построении поверхности вращения, обладающей максимальным объемом, с заданными ограничениями на ширину / Е.Г.Цветкова // Межвузовская научно-практическая конференция, посвященная 300-летнему юбилею Леонарда Эйлера: Сборник статей. Тверь: ТвГУ, 2007. С. 91-104.
  4. Цветкова Е.Г. Задача о построении поверхности вращения, обладающей максимальной площадью поверхности, с заданными ограничениями на ширину / Е.Г.Цветкова // Многоуровневая система подготовки специалистов на основе информационных и коммуникационных технологий образования: Сборник научных трудов. Тверь: ТвГУ, 2006. С. 176 – 187.
  5. Цветкова Е.Г. Решение экстремальных задач геометрии методами оптимального управления и нелинейного программирования // Математика. Информационные технологии. Образование: Сборник научных трудов. Оренбург: ОГУ, 2008. С.103-106.
Pages:     | 1 | 2 ||






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»