WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 | 2 || 4 |

1,76106

5,1104

2.6105

6.5105

5.1106

По мере увеличения концентрации двухвалентной примеси Са происходит нарастание концентрации ионов Fe4+, что сопровождается уменьшением сопротивления образцов. В образце с содержанием Са 0.15 форм.ед. наблюдаемое увеличение сопротивления можно объяснить появлением качественно новых образований – однозарядных ионов кислорода, повышение концентрации которых, согласно теории [2], сопровождается усилением обменного взаимодействия, имеющего ферромагнитный характер, и снижением проводимости в области низких температур. В образцах с большим содержанием кальция происходящее увеличение сопротивления можно связать с появлением анионных вакансий, приводящих к нарушению косвенного обменного взаимодействия и процесса переноса электронов, увеличению их рассеяния и, соответственно, повышению энергии активации и уменьшению проводимости.

На основе результатов изучения электропроводности, данных мессбауэровской спектроскопии, значений параметра кристаллической решетки в работе делается вывод о смене механизма зарядовой компенсации при концентрациях двухвалентной примеси кальция около 0.15 и 0,2 форм.ед.

В четвертой главе на основе проведения высокотемпературных отжигов образцов в окислительных и восстановительных средах изучено влияние дефектов нестехиометрии на структурные и магнитные параметры железо- иттриевого граната с двухвалентной примесью.

Значения параметра решетки, приращение удельной намагниченности насыщения у исследуемых образцов, после окислительных и восстановительных отжигов, приведены соответственно в таблице 4 и 5.

Таблица 4.

Зависимость параметра решетки а, замещенного железо-иттриевого граната от времени отжига в различных атмосферах.

Параметр кристаллической решетки а,

Состав

Отжиг на воздухе 25 часов

Отжиг в вакууме, час.

Отжиг в кислороде, час.

4

8

12

4

8

12

Y3Fe5O12

12,379

12.378

12.378

12.377

12,378

12,378

12,377

Y2,95Ca0,05Fe5O12

12,377

12,376

12,376

12,375

12,377

12,376

12,376

Y2,9Ca0,1Fe5O12

12,375

12,374

12,374

12,373

12,374

12,373

12,373

Y2,87Ca0,13Fe5O12

12,374

12,374

12,373

12,373

12,374

12,373

12,372

Y2,85Ca0,15Fe5O12

12,375

12,375

12,376

12,374

12,375

12,375

12,374

Y2,83Ca0,17Fe5O12

12,375

12,374

12,375

12,374

12,374

12,373

12,373

Y2,8Ca0,2Fe5O12

12,376

12,375

12,374

12,373

12,375

12,375

12,374

Таблица 5.

Приращение удельной намагниченности насыщения s,у образцов после отжигов в вакууме и кислороде.

Содержание

Са, форм.ед.

s,

гаусс ·см3/г

s,гаусс·см3/г

Отжиг в вакууме, час

Отжиг в кислороде, час

4

8

12

4

8

12

0,05

26,42

0,52

-0,14

-0,49

-0,22

-0,79

0,29

0,1

25,55

1,23

-0,16

-0,27

-0,13

-0,24

1,07

0,13

23,98

3,01

2,76

1,8

-0,53

1,34

2,43

0,15

26,34

0,55

0,26

-0,26

-0,41

-1,03

0,45

0,17

26,77

-0,79

-1,2

-1,44

-0,52

-1,35

-0,39

0,2

26,42

0,51

0,82

0,96

-0,28

-1,21

-0,82

При восстановлении образцов с небольшим содержанием кальция до 0.13 форм.ед., идет активное образованием анионных вакансий, что приводит к снижению значений параметра решетки при отжигах в вакууме. При этом первоначальная перезарядка ионов Fe4+ в Fe3+ вызывает рост значений намагниченности насыщения, а дальнейшее увеличение времени отжига приводит к образованию анионных вакансий и спаду значений намагниченности насыщения. Особый интерес вызывают образцы состава Y2,85Ca0,15Fe5O12, в которых вероятно одновременно присутствуют однозарядные ионы кислорода О- и в небольшой концентрации ионы Fe4+. Первоначально восстановление ЖИГ такого состава также вызывает преобразование валентного состояния ионов Fe4+ в Fe3+, что сопровождается ростом значений s. Дальнейший переход анионов О– в О–2 (при этом ионы [Fe3+]a в окта подрешетке переходят в высокоспиновое состояние) и образование кислородных вакансий приводят к уменьшению значений намагниченности насыщения и параметра решетки. Аналогичный процесс компенсации заряда наблюдается и в образце с содержанием Са 0.17 форм.ед. Однако наличие анионных вакансий в исходном состоянии и отсутствие ионов Fe4+ приводит к постепенному уменьшению значений s и а на протяжении всего времени восстановительного отжига. При концентрации иновалетной примеси 0.2 форм. ед. происходят монотонное уменьшение параметра решетки и увеличение значений удельной намагниченности насыщения. Это связанно с ростом концентрации анионных вакансий и образованием ионов Fe2+.

Во время протекания окислительных отжигов у образцов с небольшим содержанием Са, в которых изначально присутствовали катионы Fe4+, сначала происходит увеличение их концентрации, что обусловливает снижение параметра решетки и увеличение значений удельной намагниченности насыщения. При увеличении времени отжигов происходит уменьшение содержания анионных вакансий и возникновение катионных вакансий в октаэдрической подрешетке, которые эффективно снижают намагниченность последней, в результате чего намагниченность насыщения возрастает. При более высоком содержании Са сначала происходит уменьшение кислородных вакансий с соответствующим появлением ионов Fe4+ и образованием катионных вакансий в окта-подрешетке, что вызывает уменьшение параметра решетки и значений удельной намагниченности насыщения.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

  1. Получены однородные по химическому и фазовому составу ультрадисперсные порошки замещенного железо-иттриевого граната,со средним размером частиц ~100 нм.
  2. Получены однородные по химическому и фазовому составу субмикрокристаллические феррит-гранаты со средними размерами зерен около 500 нм.
  3. Уменьшение размера частиц порошков и зерен в керамических образцах ЖИГ приводит к снижению значений удельной намагниченности насыщения, что обусловлено ее обратной зависимостью от отношения площади поверхности к объему частиц.
  4. С использованием методики, основанной на сравнении экспериментальных и расчетных значений параметра решетки, был сделан вывод о возможности зарядовой компенсации двухвалентной примеси при малых концентрациях ионами Fe4+, расположенными в тетра – позициях решетки.
  5. В железо-иттриевых гранатах, допированных кальцием, в субмикрокристаллическом состоянии существуют критические значения концентрации двухвалентной примеси, при котором происходит смена механизмов зарядовой компенсации.
  6. При концентрациях двухвалентной примеси Са2+ от 0,05 до 0,13 форм.ед. зарядовая компенсация двухвалентной примеси осуществляется ионами Fe4+, при содержании Са2+ (0,15-0,17 форм.ед.) возникают однозарядные ионы кислорода O-, дальнейшее увеличение примеси приводит к возникновению анионных вакансий.

ЦИТИРУЕМАЯ ЛИТЕРАТУРА

  1. Воробьев Ю.П. Дефекты лазерных кристаллов и магнитной керамики. - Екатеринбург. УрО РАН.- 2006. - 593 с.
  2. Avgin I., Huber D.L. Exchange stiffness of Ca-doped YIG// J. Appl. Phys. - 1994.-V.75. - No.10. - P.5517-5519
  3. Magnetic properties of Ge,Gd-substituted yttrium iron garnet ferrite powders fabricated using a sol–gel method. / Haitao Xu, Hua Yang, WeiXu, Shouhua Feng //J.Mater. Process.Tech.-2008.-No197.- -P.296-300.
  4. Strocka B., Holst P., Tolksdorf W. An empirical formula for the calculation of lattice constants of oxides garnets based on substituted yttrium- and gadolinium-iron garnets// Philips J. Res.- 1978.-V.33.-No3.- -P.186-202.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

Pages:     | 1 | 2 || 4 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»