WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     ||
|

В таблице 1 представлены результаты исследований динамики ВТМ при использовании асинхронных двигателей различных типов и исполнений.

Таблица 1 – Параметры ВТМ с применением двигателей различных типов

Параметры

Тип двигателя

с фазным ротором 30 кВт

с фазным ротором 45 кВт

с повышенным

скольжением 36 кВт

с повышенным

скольжением 26,5 кВт

основное исполнение 45 кВт

с учетом эффекта вытеснения тока

основное исполнение 55 кВт

с учетом эффекта вытеснения тока

с повышенным пусковым

моментом 30 кВт

с повышенным пусковым

моментом 22 кВт

Максимальное значение тока при пуске, А

805,6

498,087

400,776

735,985

857,777

499,386

348,579

Значение тока в стационарном режиме, А

35,747

49,213

32,402

30,965

46,722

58,668

38,571

28,724

Максимальное значение тока при ударе, А

37,535

53,517

34,332

31,369

50,069

67,952

41,069

30,551

Время выхода ВВ на синхронный режим при пуске, с

7,3

10,1

12,9

13,2

7,8

8,8

14,6

Время выхода ВВ на синхронный режим после удара, с

0,9

0,8

2,3

2,2

1,6

1,0

0,7

1,0

При анализе полученных результатов сделаны следующие выводы.

1. Наиболее тяжелым режимом работы для приводных двигателей вибротранспортирующей машины является ее пуск, т.е. подъем дебалансов из нижнего положения и их последующая раскрутка. После раскрутки ВВ двигатели работают в режиме, близком к холостому ходу и большая мощность двигателей не требуется.

2. Падение монолитной массы на рабочий орган вибротранспортирующей машины не вызывает значительных бросков тока в двигателях, способных привести к выходу их из строя.

3. При использовании двигателей с фазным ротором мощностью 45 кВт удается запустить ВВ даже без дополнительного пускового сопротивления, но при этом после выхода на стационарный режим, потребляемые токи остается достаточно большим. Кроме того, в реальных условиях эксплуатации такие двигатели требуют применения дополнительных пусковых сопротивлений, а так же внешнего (ручного или автоматического) управляющего воздействия для их переключения в момент пуска.

4. При применении двигателей основного исполнения показана принципиальная возможность пуска ВВ с двигателями мощностью 45 кВт, но при этом пусковой процесс протекает тяжело и медленно. Использование двигателей основного исполнения большей мощности позволяет осуществить процесс пуска ВТМ быстрее, применение двигателей подобного типа заведомо завышенной мощности приводит к неоправданно завышенному расходу электроэнергии по сравнению с двигателями, описанными ниже.

5. Двигатели с повышенным скольжением осуществляют раскрутку ВВ при мощности 26,5 кВт. При этом токи в стационарном режиме почти вдвое меньше, чем при использовании двигателей основного исполнения мощностью 55 кВт. Однако применение двигателей с повышенным скольжением целесообразно только при равномерной безударной работе ВТМ.

6. Двигатели с повышенным пусковым моментом мощностью 30 кВт легко проходят режим пуска, обладают наименьшим временем выхода на синхронный режим после удара, однако потребляют несколько большие токи в стационарном режиме по сравнению с двигателями с повышенным скольжением.

7. При дальнейшем уменьшении мощности двигателей с повышенным пусковым моментом сохраняется достаточный для подъема и раскрутки ВВ пусковой момент, однако увеличивается время раскрутки, что приводит к чрезмерно длительному протеканию по обмоткам двигателей больших пусковых токов, способных вывести двигатели из строя.

Основной целью данной работы является совершенствование динамики ВТМ, и, как следствие, решение задачи энергосбережения в рабочем режиме ВТМ при выполнении машиной ее основных функций. В этом случае основным критерием подбора приводных электродвигателей является условие наименьшего потребления электроэнергии в установившемся режиме. При этом, в качестве ограничивающего, выступает условие уверенного пуска ВТМ из состояния покоя, т.е. за время, не вызывающее перегрев обмоток двигателей выше допустимых пределов.

Опираясь на этот критерий, при проектировании новых ВТМ и для снижения потребляемой электроэнергии в процессе работы уже существующих машин можно сформулировать следующие рекомендации по подбору электродвигателей. Отметим, что приведенные ниже рекомендации сформулированы для машин с массой рабочего органа порядка 23 т (ВТМ типа ГПТ), однако математическая модель и предложенная методика позволяют выработать рекомендации для ВТМ любых других типов. Отметим так же, что все типы двигателей, рассмотренных в работе, серийно выпускаются отечественной промышленностью.

Несмотря на сложный и энергоемкий пусковой переходный процесс, основное количество электроэнергии ВТМ потребляет в рабочем (стационарном) режиме. В связи с этим, применение двигателей основного исполнения высокой мощности, потребляющих в стационарном режиме большие токи, экономически неоправданно.

Для ВТМ, работа которых не связана с частыми ударными воздействиями и значительными перекосами рабочей нагрузки, можно рекомендовать применение двигателей с повышенным скольжением низкой мощности, например, 26,5 кВт. При этом амплитудное значение тока в стационарном режиме у таких двигателей в 1,9 раза ниже, чем у двигателей основного исполнения мощностью 55 кВт.

Для машин, работающих в условиях частых ударных воздействий, достаточно применить двигатели с повышенным пусковым моментом, мощностью порядка 30 кВт, при этом амплитудное значение тока в стационарном режиме у таких двигателей в 1,5 раза ниже, чем у двигателей основного исполнения мощностью 55 кВт.

Двигатели с фазным ротором при наличии пускового реостата позволяют осуществить пуск ВТМ при мощности в 30 кВт. Наличие пускового реостата дает возможность осуществить разгон вибровозбудителей при характеристиках, близких по характеру к характеристикам двигателей с повышенным скольжением, а в стационарном режиме, при отключенных пусковых реостатах, характеристики двигателей с фазным ротором близки по характеру к характеристикам двигателей основного исполнения или с повышенным пусковым моментом. При этом за счет включения и отключения пусковых реостатов, в одном двигателе удается совместить положительные свойства различных типов двигателей. Амплитудное значение тока в стационарном режиме двигателей с фазным ротором мощностью 30 кВт в 1,6 раза ниже, чем у двигателей основного исполнения мощностью 55 кВт. Однако двигатели с фазным ротором имеют более высокую себестоимость, по сравнению с двигателями с повышенным скольжением и с повышенным пусковым моментом, более трудоемки и дороги в обслуживании.

Таким образом, путем правильного подбора необходимых модификаций двигателя можно не только улучшить пусковую динамику ВТМ, но и существенно сократить потребление электроэнергии в установившемся режиме, что приводит к уменьшению эксплуатационных расходов. Окончательное решение по выбору того или иного типа двигателя принимается в каждом конкретном случае в зависимости от поставленных целей и условий эксплуатации машины.


заключение

В диссертации поставлена и решена задача исследования совместной нестационарной динамики ВТМ и электродвигателей как единой электромеханической системы. построена комплексная синтетическая математическая модель нестационарной динамики электромеханической системы «вибротранспортирующая машина», позволяющая описывать все стадии движения машины, включая неустановившиеся, характерные для переходных динамических процессов.

Построенная математическая модель реализована в виде программного комплекса. Программный комплекс снабжен окном интерфейса, позволяющим формировать любые геометрические и физические параметры вибромашины и параметры электродвигателей. Это дает возможность задавать параметры, как реальных машин, так и вновь проектируемых и даже гипотетических машин.

Программный комплекс представляет собой мощный инструмент, помогающий конструктору на стадии проектирования новых ВТМ получить представление о динамике будущей машины и заблаговременно решить вопрос об оптимальном подборе приводных электродвигателей. Он может быть полезен также для студентов механических специальностей в качестве учебного пособия, иллюстрирующего нестационарную динамику ВТМ.

С помощью программного комплекса поставлен ряд численных экспериментов, позволяющих выявить зависимости длительности синхронизации, величины токов в обмотках двигателей при протекании пусковых и послеударных переходных процессов от параметров электродвигателей различных типов и исполнений. Сформулированы рекомендации по проектированию ВТМ, в частности подбору типов и модификаций асинхронных двигателей с целью уменьшения энергозатрат при эксплуатации ВТМ.

Основные выводы и результаты работы сводятся к следующему.

1. Построена и реализована в виде программного комплекса математическая модель совместной динамики ВТМ и приводных асинхронных двигателей как единой электромеханической системы.

2. Обоснована необходимость использования в математической модели нелинейных дифференциальных уравнений двигателей для более точного описания пусковых переходных процессов.

3. Исследована динамика пусковых переходных процессов и переходных процессов, вызванных падением на рабочий орган монолита, сопоставимого по массе с массой самой машины. Оценены величины токов в обмотках двигателей при различных переходных процессах в электромеханической системе ВТМ.

4. Сформулированы рекомендации по подбору типов и исполнений двигателей, а так же их мощностей с целью уменьшения расхода электроэнергии. Отмечено, что при выборе исполнения асинхронных двигателей необходимо учитывать возможность ударной либо безударной работы ВТМ.

Публикации по теме работы

1. Румянцев, С. А., Азаров, Е. Б. Математическая модель нестационарной динамики электромеханической системы «вибротранспортирующая машина – электродвигатели» [Текст] // Изв. ВУЗов. Горный журнал. – 2006 – № 6. – С. 106 – 109. – ISSN № 0536–1028.

2. Румянцев, С. А., Азаров, Е. Б. Математическая модель нестационарной динамики системы «вибромашина – электропривод» в случае привода от асинхронных двигателей с короткозамкнутым ротором [Текст] // Транспорт Урала. – 2005. – №1. – с. 2 – 7. – ISSN № 1815–9400.

3. Румянцев, С. А., Азаров, Е. Б. Исследование нестационарной динамики вибротранспортирующих машин с использованием математической модели электромеханической системы «вибромашина – электропривод» [Текст] // Транспорт Урала. – 2005. – №4. – с. 45 – 50. – ISSN № 1815–9400.

4. Румянцев, С. А., Азаров, Е. Б. Уравнения нестационарной динамики системы «вибротранспортирующая машина – асинхронные электродвигатели» [Текст] // Проблемы прикладной математики: Сб. научных трудов. – Екатеринбург, УргУПС. – № 41 (124). В 2-х т.: Т.1. – 2005 – 2006. – С. 213 – 228.

5. S. Rumyantsev, E. Azarov. Mathematical model of non-stationary dynamics “The vibration machine-the electric drive” system in case of a drive from asynchronous engines with a short-circuited rotor [Текст] // XXXII Summer School –Conference “Advanced Problems in Mechanics”, APM 2005. – Book of Abstracts. – P. 24.

6. S. Rumyantsev, E. Azarov. Mathematical model of non-stationary dynamics of "vibration machine - electric motors" system by application of asynchronous motor drives with raised starting properties [Текст] // XXXIII Summer School –Conference “Advanced Problems in Mechanics”, APM 2006. – Book of Abstracts. – P. 18.

Pages:     ||
|



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.