WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     ||
|

Во втором разделе представлена общая структура алгоритма определения параметров инерциальной ориентации с использованием двухканальной обработки видеосигнала на одном сигнальном процессоре.

По мере накопления информации в процессе работы прибора в алгоритме определения инерциальной ориентации можно выделить 3 этапа:

  1. Начальное измерение.
  2. Второе измерение.
  3. Очередное измерение.

На этапе начального измерения накапливается информация, необходимая для определения угловой скорости движения. На этапе второго измерения определяется величина угловой скорости движения КА, начинается построение «виртуального кадра», по которому в случае накопления более четырех звезд проводится определение инерциальной ориентации, и формируются окна вокруг изображений звезд. На этапе очередного измерения выполняется, помимо вышеописанных действий, проецирование окон на текущее изображение. Далее все последующие экспонирования проводятся на этапе очередного измерения. Блок-схема алгоритма определения ориентации на этапе очередного измерения представлена на рис. 5.

Во втором разделе более детально рассмотрен процесс выбора порогового уровня фрагментатора. Фрагментатор используется для выделения изображений звезд над уровнем фона. В качестве исходной информации используется число локализованных объектов. Порог подбирается таким образом, чтобы их число находилось в заданных пределах.

В третьем разделе рассмотрен алгоритм процесса определения вектора угловой скорости КА. Алгоритм основан на контурном подходе к совмещению двух изображений. Суть подхода заключается в выборе такой пары объектов на соседних изображениях, параметры которой имеют наибольшую вероятность. При этом исключаются помеховые объекты, вызванные влиянием солнечных вспышек, протонного излучения и подсвеченными Солнцем частицами космического пространства. Алгоритм процесса определения параметров углового движения состоит из следующих четырех этапов:

  1. Определение перемещения с максимальным весом
  2. Формирование таблицы соответствия
  3. Расчет элементов матрицы взаимной ориентации
  4. Определение направления вектора угловой скорости и ее величины

При определении перемещения с максимальным весом используются массивы локализованных объектов текущего и предыдущего изображений. В результате процесса будут получены: значение максимального веса пары, индексы массивов, соответственной пары звезд, разности абсцисс, ординат и угол между энергетическими центрами каждой пары.

Для каждой пары звезд проверяются их параметры на соответствие параметрам пары с максимальным весом. Степень соответствия определяется размером элемента разрешения.

Матрица взаимной ориентации выражается через последовательные повороты вокруг 3 осей координат на углы,,, которые определяются для каждой пары соответственных точек на основе решения системы уравнений коллинеарности методом последовательных приближений по способу наименьших квадратов:

(1)

где x1 – абсцисса центра изображения звезды на предыдущем изображении,

y1 – ордината центра изображения звезды на предыдущем изображении,

x2 – абсцисса центра изображения звезды на текущем изображении,

y2 – ордината центра изображения звезды на текущем изображении,

aij – элементы матрицы взаимной ориентации,

f, x0, y0 – фокусное расстояние и координаты главной точки оптической системы ОЗД.

Направление оси вращения и угол поворота выражаются через матрицу преобразования A на основании следующих соотношений:

(2)

Абсолютное значение угловой скорости и составляющие угловой скорости по осям внутренней системы координат x, y, z определяются на основе формулы (3):

,,,. (3)

В четвертом разделе рассмотрена процедура построения «Виртуального кадра». Виртуальный кадр служит для работы на высоких угловых скоростях, когда прибором фиксируются только яркие звезды, число изображений которых может быть не больше двух.

При построении виртуального кадра (рис. 6) проводится проецирование координат изображений звезд, попавших в поле зрения прибора на текущий момент времени.

В пятом разделе рассматривается процедура построения окон, которая служит для исключения максимально возможного числа световых помех на этапе обработки очередного изображения. В процессе определения инерциальной ориентации применяется построение окон по звездному каталогу и по таблице соответствия. При построении окон по звездному каталогу экваториальные координаты звезд сектора проецируются на текущее изображение с учетом матрицы инерциальной ориентации. Данный метод построения окон используется, если определены элементы матрицы инерциальной ориентации.

В шестом разделе рассматривается разработанная процедура уточнения фокусного расстояния и координат главной точки видеокамеры ОЗД по результатам обработки изображений контрольной сетки стенда динамических испытаний.

Рис.5. Блок-схема процесса «Очередное измерение» алгоритма определения параметров инерциальной ориентации

Рис. 6 Блок-схема процесса «построение Виртуального кадра»

В четвертой главе рассматриваются технические средства и результаты верификации математического обеспечения солнечного и звездного датчиков. Верификацией математического обеспечения является проверка выполнения поставленных задач в процессе обработки результатов эксперимента.

В первом разделе выполнено краткое описание стенда натурных испытаний ОСД, который предназначен для оценки работоспособности прибора и его математического обеспечения при наблюдениях реального Солнца. Сравнение результатов измерений ОСД с теоретическими значениями позволяет построить график изменения ошибок во время натурных испытаний и оценить их статистические характеристики.

Во втором разделе представлены результаты верификации математического обеспечения. Верификация математического обеспечения ОСД проводилась в ходе натурных испытаний в соответствии с методикой натурных испытаний, которая позволяет оценить работоспособность ОСД при неподвижном положении прибора. В итоге проведения натурных испытаний ОСД зафиксированы:

  • направляющие косинусы вектора Солнца, измеренные ОСД;
  • время привязки измерений.

Измерения проводились при положениях прибора, позволяющих исследовать его работу при ориентации по Солнцу, как в центре, так и на краях поля зрения.

Для оценки точности работы прибора и верификации его программного обеспечения были рассчитаны ошибки определения относительных и взаимных углов направления на Солнце, а также их среднеквадратическое отклонение и среднее значение.

Ошибка определения относительного угла между текущим направлением на Солнце и начальным направлением определялась по следующей формуле:

, (4)

где - интервал времени от начала измерений до текущего момента времени,

S0 – начальное значение направляющих косинусов вектора Солнца,

Si – текущее значение направляющих косинусов вектора Солнца в момент времени ti.

Ошибка вычисления взаимного угла между предыдущим и текущим направлениями на Солнце (i) рассчитывалась по следующей формуле

, (5)

где: - интервал времени между соседними измерениями;

Si-1 – предыдущее значение направляющих косинусов вектора Солнца;

Si – текущее значение направляющих косинусов вектора Солнца.

Заключительным этапом обработки является построение графиков, отображающих:

  • траекторию движения Солнца в поле зрения ОСД;
  • изменение ошибок относительного угла во времени;
  • изменение ошибок взаимного угла во времени.

Ниже приведены графики, построенные при движении Солнца в центре поля зрения (рис.7) в течени часа.

Рис.7. Траектория движения Солнца в центре поля зрения прибора

Этой траектории соответствует график изменения относительной ошибки во времени (рис. 8).

Рис. 8. График изменения относительной ошибки во времени

Рис. 9. График изменения взаимной ошибки во времени.

Как видно на графике, динамика изменения ошибки имеет ярко выраженные высокочастотную и низкочастотную составляющие. Наличие ВЧ-составляющей, по всей видимости, обусловлено шумами электронных компонентов, ПЗС-линейки, АЦП и ВИП ОСД. Наличие НЧ-составляющей обусловлено скорее всего неточностью изготовления оптического элемента прибора, а также неравномерностью коэффициента пропускания фильтра и неравномерностью чувствительности ПЗС-линейки. Среднеквадратическая ошибка определения относительного угла составляет 0,274 угл. мин.

Динамика ошибки определения взаимных углов в центре поля зрения (рис.9) содержит только ВЧ-составляющую.

Среднеквадратическая ошибка определения взаимного угла составляет 0,118 угловых минут. Единичные выбросы ошибок обусловлены влиянием облачности в процессе натурных испытаний прибора.

По результатам натурных испытаний можно сделать вывод о работоспособности прибора. Поставленные задачи по помехозащищенности, быстродействию (частота опроса составляет 0,2с ), автоматическому подбору времени накопления и достижения высокой точности ( < 1 угл.мин.) определения направления на Солнце успешно решены.

В третьем разделе выполнено краткое описание стенда динамических испытаний оптического звездного датчика. Динамический стенд испытаний ОЗД используется для верификации алгоритмов математического обеспечения звездного координатора при воздействии на него факторов, возникающих при его эксплуатации в условиях открытого космоса.

В четвертом разделе рассмотрены результаты верификации математического обеспечения оптического звездного датчика.

При верификации математического обеспечения ОЗД проводились следующие испытания:

  1. Верификация определения инерциальной ориентации.
  2. Верификация определения значения угловой скорости оптическим методом.
  3. Определение инерциальной ориентации в темпе вычисления угловой скорости.
  4. Обработка результатов совместной работы звездного координатора и волоконно-оптического гироскопа.
  5. Определение фокусного расстояния и координат главной точки.

При верификации алгоритмов определения инерциальной ориентации использовалось следующее свойство инерциальной ориентации: если система координат прибора неподвижна, то склонение оси Z приборной системы координат в ходе проведения эксперимента должно быть постоянным. Так, среднеквадратическое отклонение колебаний склонения оси Z в инерциальной системе координат составило 2 угл. сек. Ошибка из-за неточности выставки оси Z в зенит составила 1°15’.

При верификации определения значения угловой скорости использовался динамический стенд испытаний звездного координатора. Стенд позволяет устанавливать угловую скорость вращения изображений звезд. В результате верификации был построен график изменения угловой скорости (рис. 10), при этом на стенде была установлена скорость 4 угл. мин./c.

Рис.10. График изменения величины угловой скорости во времени

Среднеквадратическая ошибка определения угловой скорости составила
3 угл. сек./c. Отличие средней измеренной скорости от устанавливаемой составляет 0.169 угл. мин. Данное отличие обусловлено неточностью выдерживания угловой скорости движения динамическим стендом испытаний.

При определении фокусного расстояния и координат главной точки были получены следующие результаты:

  • значение фокусного расстояния прибора в 59,669 мм определено со среднеквадратической ошибкой 3 мкм;
  • координаты главной точки x0=0,503 мм и y0=0,05 мм определены со среднеквадратической ошибкой 0,078 мм;
  • суммарная дисторсия прибора и стенда в узлах контрольной сетки не превышает 3 мкм, что составляет 0,18 от размера элемента разрешения звездного координатора БОКЗ-М.

Полученные параметры согласуются с данными о суммарной дисторсии коллиматора стенда и объектива оптического звездного датчика, значения которых были определены при съемках звездного неба.

Заключение

В представленной работе были получены следующие результаты:

  1. Разработано математическое обеспечение оптического солнечного датчика, позволяющего повысить его помехозащищенность за счет обработки сигналов от кодирующей маски с тремя троированными щелями и обеспечивающего определение направления на Солнце при угле поля зрения 120х60° с точностью 1 угл.мин. Математическое обеспечение ОСД реализовано в виде программного обеспечения, прошиваемого в память сигнального процессора ОСД.
  2. Для определения геометрических параметров, описывающих взаимное положение ПЗС-линейки, кодирующей маски и посадочного места прибора, разработаны методика геометрической калибровки датчика и методика определения взаимной ориентации внутренней системы координат и системы координат посадочного места на борту КА. Геометрические параметры используются в МО ОСД для определения направления на Солнце в системе координат посадочного места.
  3. Для верификации программного обеспечения ОСД разработана методика его натурных испытаний. В ходе натурных испытаний получены результаты, подтверждающие работоспособность программного обеспечения с точностью 1 угл.мин при наблюдениях за реальным Солнцем.
  4. Разработано математическое обеспечение оптического звездного датчика, позволяющее повысить его помехозащищенность, быстродействие (до 10 Гц) и допустимую угловую скорость до 30 угл.мин./c с сохранением точности вычислений x,y5 угл. сек. за счет определения инерциальной ориентации в темпе измерений угловой скорости по соседним изображениям звезд. Разработанное математическое обеспечение ОСД планируется использовать в очередной модификации звездного координатора БОКЗ-М.
  5. Разработана методика определения элементов внутреннего ориентирования оптического звездного датчика по изображениям узлов контрольной сетки, проецируемых на стенде динамических испытаний в поле зрения прибора.
  6. При верификации математического обеспечения ОЗД по координатам энергетических центров изображений звезд оценивалась точность измерений угловой скорости движения КА и точность определения параметров инерциальной ориентации. Анализ результатов показал работоспособность разработанного математического обеспечения и приемлемые точностные параметры. При этом точность определения инерциальной и взаимной ориентации, характеризуемая среднеквадратическим отклонением углов, составила при угловом вращении вокруг осей ОХ и OY 3 угл. сек., а при вращении вокруг оси Z 20 угл.
    Pages:     ||
    |



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.