WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 | 2 || 4 | 5 |

Была исследована возможность использования полосы поглощения с максимумом в области 1000 нм, принадлежащей переходу 3A23T2 тетраэдрически координированных ионов Cr4+, для оптимизации условий получения генерации на длине волны 1.3 мкм в кристаллах ГСГГ:Cr:Nd. Главной задачей при получении генерации на переходах неодима 4F3/24I13/2 ( ~ 1.3 мкм) и 4F3/24I15/2 ( ~ 1.8 мкм) является подавление канала генерации 4F3/24I11/2 ( ~ 1.06 мкм). Для этого на элементы резонатора наносятся высокоселективные покрытия. Кроме того, для отсечки части излучения лампы накачки в области 1 мкм, стимулирующей суперлюминесценцию внутри активного элемента, используют стекло с самарием. Однако это не устраняет в полной мере возможность возникновения суперлюминесценции внутри активного элемента, обусловленной более чем трехкратным превышением коэффициента усиления на длине волны 1.06 мкм по сравнению с коэффициентом усиления на длине волны 1.3 мкм.

Рис. 6. Спектры поглощения кристаллов ГСГГ:Cr:Nd

а) активный элемент без ионов Cr4+ б) активный элемент с концентрацией тетраэдрически координированных ионов Cr4+ равной 3*1016 см -3.

В нашем случае четырехвалентный тетраэдрически координированный хром был использован как источник селективных распределенных (внутри активного элемента) потерь. Как было показано, появление тераэдрически координированных ионов Cr4+в кристаллах граната обусловлено вхождением в кристалл двухвалентных примесей (Ca, Mg), приводящих к эффекту зарядовой компенсации. Количество Cr4+ зависит также от степени окисленности кристалла. В кристаллах ГСГГ:Nd:Cr кальций входил в качестве паразитной примеси, приводя тем самым к появлению ДП связанных с тетраэдрическим Cr4+. Были исследованы три образца активных элементов, имеющих различные концентрации поглощающих центров Cr4+ в тетраэдрической координации. В составе образца №1 ионы Cr4+ номинально отсутствовали. Образец №2 содержал около 3*1016 см3 тетраэдрически координированных ионов Cr4+. При этом показатель поглощения на ~1.0612 мкм составлял ~9*10-2см -1, что соответствовало пропусканию 50% при длине образца 3.2см (рис. 6. б). Показатель поглощения на ~1.33 мкм был ~ 6*10-3 cм-1. В образце №3 концентрация тетраэдрически координированных ионов Cr4+ составляла ~3*1017см-3. Показатель поглощения на ~1.0612мкм составлял ~9*10-1 см-1, на длине волны 1.33 мкм он равнялся 6*10-2см -1. Для трех образцов записывались спектры люминесценции (рис.7). С увеличением концентрации четырехвалентного хрома наблюдалось уменьшение соотношения интенсивностей линий люминесценции на длинах волн 1.06 (I1) и 1.3 (I2) мкм. Для образца без Cr4+ I1/I2 = 3.5, для образца с концентрацией Cr4+3*1016 см3 I1/I2 =1.9 и для образца с концентрацией Cr4+3*1017 см3 I1/I2 =1.6. При этом абсолютное значение интенсивности люминесценции на длине волны 1.3 мкм для образца 2практически не менялась, для образца 3 она уменьшалась в два раза.

Рис. 7. Интенсивности люминесценции для трех образцов ГСГГ:Cr:Nd.

  1. образец №1(без Cr4+)
  2. образец №2 (конц.Cr4 +3*1016 см-3)
  3. образец №3 (конц.Cr4 +3*1017см-3)

На всех трех образцах были проведены генерационные испытания в режиме свободной генерации и модуляции добротности на длине волны 1.33 мкм. При этом на торцы активных элементов были без просветляющих покрытий. Свободная генерация была получена на образце N2 с содержанием Cr4+3*1016 см3. На образцах 1,3 генерация не наблюдалась. Генерационная характеристика образца N2 в режиме свободной генерации на длине волны 1.33 мкм приведена на рис. 8. Кроме того на образце N2 была получена генерация в режиме пассивной модуляции добротности с использованием пассивного кристаллического затвора на основе кристалла АИГ:V3+. Таким образом, была показана возможность использовать полосу поглощения тетраэдрического Cr4+ для создания селективных распределенных потерь на длине волны 1.06 мкм.

Рис.8 Зависимость выходной энергии от энергии накачки в режиме свободной генерации на ~1.33 мкм для образца ГСГГ:Cr:Nd №2.

Наличие селективных распределенных потерь на длине волны 1.06 мкм внутри кристаллов ГСГГ:Cr:Nd позволило получить генерацию на длине волны 1.33 мкм даже на активных элементах с непросветленными торцами. В отсутствии потерь на длине волны 1.06 мкм, обусловленных тетраэдричесими ионами Cr4+, достичь порога генерации на длине волны 1.3 мкм в активном элементе с непросветленными торцами практически никогда не удается. При этом при дальнейшем увеличении энергии накачки наблюдалась генерация на длине волны 1.06 мкм обусловленная френелевским отражением от торцов АЭ.

В главе четыре представлены результаты исследований спектров кристаллов алюмоиттриевого граната легированного ионами ванадия. Как было показано в работах М.Вебера, ванадий в гранате может принимать валентные состояния от 2+ до 4+ и занимать при этом октаэдрические и тетраэдрические позиции. Также обсуждались методы использования зарядокомпенсаторов для управления валентными состояниями ванадия. Исследования влияния условий получения кристаллов на валентные состояния ванадия не проводилось.

Кристаллы АИГ:V были получены методом направленной кристаллизации в атмосфере, содержащей 80% Ar + 20% H2. Кроме того, часть образцов подвергалась восстановительному отжигу в той же атмосфере. Для исследования спектров ДП образцов снимался разностный спектр между пластинкой исходного образца и пластинкой после восстановительного отжига.

Спектр исходных кристаллов АИГ:V с концентрацией ванадия в шихте 3*1020 см-3 представлен на рис. 9 (кривая 1). Он состоит из четырех основных полос с максимумами на 1300, 830, 600 и 438 нм. Интерпретация полос в рамках теории КП представлена в таблице 3. Спектр пластинки АИГ:V после восстановительного отжига в атмосфере 80% Ar + 20% H2 в течение суток представлен на рис 10. Как видно из рис. 8,9 отжиг кристаллов в восстановительной атмосфере привел к возникновению спектра дополнительного поглощения (ДП) и изменению в соотношении интенсивности полос. Спектр ДП состоял из полос с максимумами 1300, 820, 590 нм, принадлежащих тетраэдрическому иону ванадия.

В “чистом “ виде спектр ДП представлен на кривой 2 (рис.8) представляющей собой разностный спектр между пластинкой исходного кристалла и пластинкой после восстановительного отжига. Экспериментально был определена температура отжига, при которой происходит образование спектра дополнительного поглощения. Она составила 1550°С. Время отжига, при котором спектр ДП остается стабильным составляет 48 часов. Пополнение“ числа тетраэдрически координированных ионов V3+ происходит за счет ионов ванадия в степени окисления выше трех, находящихся в тетраэдрических позициях, что обусловлено малым ионным радиусом ионов V5+, V4+.

Рис. 9. Спектры поглощения кристаллов АИГ:V.

1 спектр исходного кристалла после роста, концентрация V в шихте 21020 см-3

2 разностный спектр (спектр дополнительного поглощения) после отжига в Ar-H2 атмосфере

Рис. 10. Спектр кристаллов АИГ:V после отжига в Ar-H2 атмосфере.

Таблица 3.

Переход

YAG, нм

3A23T2

(V3+ тетраэдр)

1300

3A23T1

(V3+ тетраэдр)

820

3A21A2, 1T2

(V3+ тетраэдр)

590

3T13T2

(V3+октаэдр)

615

3T13T1 (3P)

(V3+октаэдр)

430

Это неизовалентное вхождение ванадия в решетку граната обусловлено тем, что в качестве компонента шихты используется пятиокись ванадия V2O5. При этом компенсация заряда в этом случае происходит за счет кислорода в междоузлиях. При восстановительном отжиге кислород выходит из решетки и оставшаяся часть ванадия в степени окисления выше трех восстанавливается до трехвалентного состояния. Экспериментально установлено, что при восстановительном отжиге число тераэдрически координированных ионов V3+ увеличивается вдвое. При концентрации ванадия в шихте 3*1020 см-3 величина показателя поглощения на длине волны 1.3 мкм (переход 3A23T2) достигает 3.45см-1.

Таблица 4

Кристалл

Октаэдр

Тетраэдр

Dq, см-1

В, см-1

С, см-1

Dq, см-1

В, см-1

С, см-1

АИГ

1700

600

2535

810

450

1600

Таким образом, было установлено, что именно при восстановительных условиях синтеза кристаллов алюмо-иттриевого граната с ванадием имеет место изовалентное (V3+) вхождение ванадия в решетку граната. При этом спектр кристалла определяется ионами ванадия в октаэдрических и тетраэдрических позициях.

Фототропные свойства кристаллов АИГ:V под воздействием излучения с длиной волны 1.315 мкм были исследованы на йодном фотодиссоционном лазере, работающего в режиме модуляции добротности резонатора осуществляющемся с помощью пассивного затвора на основе раствора красителя 1067. Как было показано, широкая фототропная полоса поглощения (1.2-1.4 мкм) с максимумом на длине волны 1.34 мкм (Рис.9.) соответствует электронно-колебательному переходу 3A23T2 ионов V3+ в тетраэдрической координации решетки граната.. На Рис.10. приведены кривые просветления исследованных образцов пассивных затворов АИГ:V.

Обработка экспериментальных результатов была проведена в предположении конкретной модели поглощающей среды (расчетная кривая 1 на Рис. 10) согласно известной формуле:

,

Она позволила определить поперечное сечение перехода 3A23T2 на длине волны =1.315 мкм, которое оказалось равным = 10-18 см2. В приведенном выражении - плотность энергии насыщения, - плотность энергии просвечивающего излучения, - начальное пропускание затвора.

Рис.10. Кривая просветления пассивного затвора ИАГ:V на длине волны 1.315 мкм.
1теоретический расчет
2 экспериментальная кривая

Расчетная кривая 1 на начальном участке хорошо совпадает с экспериментальной кривой 2. Эффект заметного насыщения экспериментальной кривой просветления при более высоких плотностях просвечивающего сигнала связан, по-видимому, с эффектами перепоглощения из возбужденного состояния 3T2, время жизни которого, определенное по кинетике затухания люминесценции на переходе 3T23A2, оказалось равным 1 мкс. Исследование характера кривой релаксации возбужденного состояния методами пикосекундной спектроскопии с временным разрешением не выявило наличия быстрой компоненты. Исходя из этого обстоятельства и характера кривой просветления, можно сделать вывод, что наиболее вероятным механизмом релаксации возбужденных ионов V3+, определяющим насыщение кривой просветления, может быть процесс ступенчатых переходов из состояния 3T2 в состояние 3T1.

Pages:     | 1 | 2 || 4 | 5 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»