WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 || 3 | 4 |   ...   | 5 |

– высокая интенсивность полос для d-d переходов может быть объяснена снятием запрета за счет смешиваний состояний центральных ионов и лигандов. В случае тетраэдрического поля степень ковалентности должна быть выше, чем в октаэдрическом поле;

– расщепление полос в области 0.65 и 1 мкм (которые, в случае иона Cr4+ в тетраэдрической позиции, должны принадлежать переходам 3A2 3T1, 3T2) так же характерно для поля более низкой, возможно тетраэдрической, симметрии.

Таким образом, спектр ДП был идентифицирован как принадлежащий ионам Cr4+ в тетраэдрической позиции. При этом широкая полоса с максимумом в области 1000 нм принадлежит переходу между уровнями 3A2 и 3T2 Cr4+.

Глава три содержит расчет электронных состояний тетраэдрических и октаэдрических ионов Cr4+ с помощью эмпирических и теоретически рассчитанных параметров кристаллического поля (КП). На основании анализов спектра ДП были определены эмпирические параметры КП Dq и параметры Рака для октаэдрических и тетраэдрических кластеров Cr4+. Величина 10Dq как в октаэдрической, так и в тетраэдрической координации, в случае ионов 3d2, равна расстоянию между энергетическими уровнями 3A2 и 3T2. Экспериментальное значение 10Dq оценивалось по расстоянию между максимумами (центрами тяжести) полос (рис.13), соответствующих этим переходам в кристаллах АИГ и ГСГГ, при этом были получены, соответственно, следующие значения Dqокт=2250см-1, Dqт=1033 см-1; Dqокт=2100см-1, Dqт=950 см-1. Для оценки значения параметра Рака “В” в случае АИГ для тетраэдрической позиции Cr4+ был использован спектр дополнительного поглощения ДП снятый при температуре 77 0К (рис.4).

Рис. 4 Спектры дополнительного поглощения в кристаллах ГСГГ:Cr:Mg и ИАГ:Cr:Mg при T=77 K

При этом предполагалось, что две узкие полосы в области 1080 и 1116 нм соответствуют переходу из основного состояния 3A2 на расщепленное состояние 1E (A и B). В таблице 1 приведены расcчитанные положения электронных уровней и экспериментально наблюдаемые максимумы полос (max) октаэдрических ионов Сr4+ в кристаллах АИГ и ГСГГ, активированных Mg и Cr, при следующих параметрах: АИГ – Dq = 2250 см-1, B = 830 см-1, С=3569 см-1; ГСГГ – Dq=2100 см-1, B=860 см-1, С=3354 см-1.

Таблица 1.

Состояние

АИГ

ГСГГ

E см-1

рmax, нм

эmax, нм

E см-1

рmax, нм

эmax, нм

3T1

0

-

-

0

-

-

1T2

12549

797

-

12334

810

-

1E

12737

785

-

12551

797

-

3T2

20815

480

480

19318

517

520

1A1

27332

365

380

26775

373

400

3T1

31581

316

290

36536

327

300

1T2

34968

285

33337

300

-

1T1

37913

263

260

36346

275

268

3A2

43315

230

231

40318

248

250

Как видно из таблицы, между рассчитанными и наблюдаемыми максимумами полос основных переходов 3T1 3T2, 3A2, 3T1(P) наблюдается хорошее соответствие.

В таблице 2 представлены расcчитанные и экспериментально наблюдаемые максимумы полос, соответствующих переходам ионов Cr4+ в тетраэдрической позиции. Для АИГ – Dq=1037 см-1, B=590 см-1, С=2301 см-1; а для ГСГГ – Dq=950 см-1, B=730 см-1, С=3134 см-1

Таблица 2

Состояние

АИГ:Cr

ГСГГ:Cr

E см-1

тmax, нм

эmax, нм

E см-1

тmax, нм

эmax, нм

3A2

0

-

-

0

-

-

1E1

91280

1095

1100

11780

847

-

3T2

10370

964

964

9500

1052

1050

3T1

15628

640

640

15106

661

660

1A1

15943

627

-

19720

507

504


1T2

19323

517

-

20102

475

-


1T1

22052

453

-

24538

407

410


3T1

24331

410

-

24343

410

-

Вследствие относительно высокой интенсивности полосы октаэдрического Cr4+ (переход 3T1 3T2), переходы 3T1 1A1, 1T2, 1T1 и 3T1 в АИГ:Cr в спектре не проявлялись. В отличии от последних, для кристаллов ГСГГ:Cr наблюдается хорошая корреляция между рассчитанными и экспериментально наблюдаемыми максимумами полос.

Были рассчитаны теоретические значения параметров кристаллического поля для ионов Cr4+. Для расчета были использованы слэтеровские волновые функции, параметры экранировки которых были уточнены применительно к ионам хрома исходя из экспериментальных значений потенциалов ионизации. Теоретические значения параметров Рака для ионов Cr4+ приведены в таблице 3.

Таблица 3

Параметр ф-ции Слэтера •108 см-1

B см-1

С см-1

C/B

4.62 (Уточненный)

954.5

3779

3.96

3.56 (По Слэтеру)

735

2911

3.96

Как и следовало ожидать, параметры Рака для ионов Cr4+ в тетраэдрической позиции (особенно в случае АИГ B=590 см-1) значительно меньше величин B и C для свободных ионов Cr4+, что свидетельствует о сильной ковалентности связи Cr4+ - O2-, Ковалентность проявляется в данном случае в том, что перераспределение заряда между хромом и кислородом приводит к изменению параметров экранировки волновых функций Слэтера. При этом соответственно меняются параметры Рака (B, C) и силы КП (Dq), которые являются линейными комбинациями радиальных интегралов от волновой функции. В связи с тем, что вопросы ковалентности выходят за рамки теории КП, они были рассмотрены с использованием метода молекулярных орбиталей (МО).

Расчет состояний октаэдрического и тетраэдрического Cr4+ по методу молекулярных орбиталей был проведен в приближении линейной комбинации атомных орбиталей и модификации Маликена-Вольсберга-Гельмгольца (МО ЛКАО МВГ). Электронные конфигурации МО основного и двух возбужденных состояний тетраэдрического кластера [CrO4]4-представлены на рис. 5. Как и в расчетах параметров КП, использовались одноэлектронные волновые функции Слэтера. Расчет проводился как иттерационная процедура. При этом определялись коэффициенты ЛКАО, которые отражали распределение заряда между хромом и групповой орбиталью кислородов, энергии самосогласованных одноэлекронных состояний, из которых складывалась полная энергия кластера.

Одним из нетривиальных результатов расчетов явилось то, что энергия состояния 3 на рис. 5 оказалась меньше энергии состояния 1 на рис. 5, традиционно считавшегося основным.

1

2

3

Рис.5. Электронные конфигурации основного (1) и возбужденных (2,3) состояний тетраэдрического кластера [CrO4]4-.

Такая ситуация наблюдалась для всех разумных значений расстояний между хромом и кислородом и параметра (заряд орбиты кислорода). Этот результат мог бы представить большой интерес как новая расшифровка основного состояния: электрон удаляется не из Cr3+ а из ближайшего окружения – групповой орбиты ионов кислорода, т.е. Cr4+ представляет собой Cr3++e+ (дырка в ближайшем окружении). По-видимому, это находит свое проявление в том, что энергия активации для образования центра имеет достаточно низкое значение. Образование тетраэдрических ионов Cr4+ происходит при температурах до 1100°С, достижимых в обыкновенных муфельных печах. По результатам самосогласованных расчетов было определено распределение электронной плотности на орбитах хрома и заново уточнены параметры волновых функций. Вычисленные с их использованием параметры Рака находились в хорошем соответствии с эмпирически определенными, что подтверждало корректность выбранной модели.

Pages:     | 1 || 3 | 4 |   ...   | 5 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»