WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 || 3 | 4 |
  1. В основу системы задач по информатике, направленной на развитие продуктивного мышления будущего учителя информатики, должна быть положена типология задач по информатике, типологическим признаком которой является набор известных решающему компонентов задачи.
  2. На развитие продуктивного мышления будущего учителя информатики в процессе обучения основам программного обеспечения оказывает влияние проведение задачно-проблемных лекций двух типов – теоретико- и практикоориентированных, использование в рамках лабораторного практикума системы задач, построение которой осуществляется в соответствии со следующими условиями: дифференциацией задач (реализующейся с учетом объекта развития, сочетания развивающихся качеств мышления, степени наглядности) и полнотой охвата качеств продуктивного мышления, а также организация проектной деятельности, дифференцированной с учетом уровня продуктивного мышления студентов.
  3. Использование системы задач для развития продуктивного мышления студентов должно быть организовано с учетом трех уровней, которые выделены по приоритетности развития либо навыков, либо отдельных качеств мышления и их сочетаний, либо самостоятельности мышления как системообразующего качества продуктивного мышления.

Обоснованность и достоверность результатов и выводов диссертационного исследования обеспечиваются опорой на фундаментальные работы в области психологии, педагогики, теории и методики преподавания информатики в вузе, выбором методов, соответствующих предмету и задачам исследования, репрезентативностью экспериментальной базы и обработкой результатов педагогического эксперимента методами математической статистики.

Исследование проводилось в несколько этапов. На первом этапе исследования (2002–2003 гг.) изучалось состояние проблемы в теории и практике, а именно осуществлялся анализ психолого-педагогической и научной литературы, с помощью анкетирования изучалось состояние учебного курса «Программное обеспечение ЭВМ» в различных вузах, проводился анализ содержания курса, выявлялись его возможности для развития мышления студентов.

На втором этапе (2003–2005 гг.) разрабатывалась методика обучения будущих учителей информатики основам программного обеспечения, направленная на развитие их продуктивного мышления.

Третий этап (2005–2006 гг.) включал организацию и проведение экспериментальной работы по оценке эффективности применения разработанной методики, проводилось теоретическое обобщение и интерпретация экспериментальных данных, оформлялись полученные результаты, формулировались выводы исследования.

База исследования: факультет информатики, математический и физический факультеты ГОУ ВПО «Омский государственный педагогический университет».

Апробация и внедрение результатов осуществлялись в соответствии с основными этапами исследования в ходе теоретической и экспериментальной работы. Теоретические положения, материалы и результаты исследования неоднократно обсуждались на заседаниях кафедры информатики и вычислительной техники ОмГПУ, были представлены на конференциях: Всероссийской научно-практической «Актуальные психолого-педагогические проблемы подготовки специалиста» (Стерлитамак, 2005), I Всероссийской научно-практической
«Актуальные вопросы методики преподавания математики и информатики в свете модернизации Российского образования» (Биробиджан, 2006), XVII Международной «Применение новых технологий в образовании» (Троицк, 2006), IV Международной научно-практической «Проблемы совершенствования качества подготовки специалистов высшей квалификации» (Омск, 2006).

Структура и содержание работы соответствует логике научного исследования. Диссертация состоит из введения, трех глав, заключения, библиографического списка использованной литературы и приложений.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы, выявлена проблема исследования, определены объект, предмет, сформулирована цель, выдвинута гипотеза, определены задачи, раскрыты научная новизна, теоретическая и практическая значимость работы, сформулированы положения, выносимые на защиту.

В первой главе «Теоретические основы развития продуктивного мышления будущего учителя информатики в процессе обучения основам программного обеспечения» рассмотрены различные подходы к трактовке понятия «продуктивное мышление», его качеств, теоретически обоснована необходимость и возможность развития продуктивного мышления будущего учителя информатики в процессе обучения информатике.

Анализ современных исследований, посвященных проблемам педагогического образования, показывает, что при подготовке учителей на начальных этапах обучения в вузе преобладают объяснительно-иллюстративные методы обучения, которые не способствуют развитию у студентов способности к самостоятельной продуктивной мыслительной деятельности. Кроме того, проведенный ретроспективный анализ методической системы обучения информатике будущего учителя информатики позволил установить: несмотря на то, что большая часть исследователей отмечает развитие мышления как одну из важнейших целей обучения информатике, исследований, посвященных решению проблемы развития продуктивного мышления будущих учителей информатики на этапе их начального обучения в вузе, нет.

Под продуктивным мышлением в психологии понимается мышление, результатом которого является открытие принципиально нового или усовершенствованного решения той или иной задачи. Продуктивное мышление характеризуется новизной своего продукта, своеобразием процесса его получения и существенным влиянием на умственное развитие.

Отметим, что различные исследователи, раскрывая суть элементов (качеств, операций, факторов и т. п.) продуктивного мышления, приводят сходные их описания. Так, в частности, М. Вертгеймер приводит существенные для продуктивного мышления операции группировки, центрирования, реорганизации, осмысления; З. И. Калмыкова выделяет основные качества продуктивного мышления: глубину, гибкость, устойчивость, осознанность и самостоятельность мыслительной деятельности. Вследствие того, что описанные качества и операции сопоставимы по своей сути, за основу в работе были приняты качества продуктивного мышления, предложенные З. И. Калмыковой, которая опиралась на исследования ряда известных исследователей проблем мышления (Дж. Гилфорд, К. Дункер, Е. Н. Кабанова-Меллер, А. М. Матюшкин, Н. А. Менчинская, Б. М. Теплов, О. К. Тихомиров, П. Торренс,
И. С. Якиманская и др.).

Такое качество продуктивного мышления, как глубина ума проявляется в степени существенности признаков, которые человек может абстрагировать при решении проблемы, в широте переноса знаний в новые ситуации. Глубина ума была описана в работах З. И. Калмыковой, С. Л. Рубинштейна, Б. М. Теплова и других ученых.

Гибкость ума характеризуется степенью изменчивости мыслительной деятельности, соответствующей меняющимся условиям исследуемой ситуации, предполагает преодоление барьера прошлого опыта, оригинальность решений. При гибком уме человек легко переходит от прямых связей к обратным, если это требуется для решения задачи. Гибкость ума исследовали
Т. В. Кудрявцев, Н. А. Менчинская, Г. П. Антонов, Е. Н. Кабанова-Меллер и другие ученые.

Устойчивость ума проявляется в способности выделить в ситуации существенные признаки и действовать, удерживая в уме их совокупность, не поддаваясь на влияние случайных признаков. Устойчивость ума рассмотрена в работах И. С. Якиманской, Е. Н. Кабановой-Меллер, Я. И. Пономарева и других ученых.

Осознанность собственной мыслительной деятельности характеризуется возможностью сделать ее предметом мысли самого решающего проблему субъекта. В различных источниках в этом значении употребляется термин «рефлексия». Изучением этого качества мышления в разное время занимались Ю. Н. Кулюткин, А. М. Матюшкин, А. С. Шаров и другие ученые.

Самостоятельность при приобретении и оперировании новыми знаниями проявляется в постановке целей, выдвижении гипотез, самостоятельном решении проблем. Самостоятельность ума описана в работах Д. Б. Богоявленской, А. А. Смирнова, Т. В. Егоровой, З. И. Калмыковой и других ученых.

Опираясь на исследования Л. С. Выготского и А. Н. Леонтьева, в которых указано, что оптимальным сроком для развития естественнонаучного мышления человека является возраст 15–20 лет, был сделан вывод о том, что для развития мышления будущих учителей информатики в период их обучения в вузе наиболее благоприятными являются начальные курсы обучения. Согласно учебным планам, на начальном этапе обучения, будущие учителя информатики изучают функциональное наполнение и назначение различного программного обеспечения. Традиционно данный раздел информатики воспринимается преподавателями и студентами как преимущественно технологический и подразумевает освоение учебного материала посредством лекций и лабораторного практикума. Лабораторный практикум предполагает решение большого количества задач.

Анализ понятия задачи как системы (Ю. М. Колягин, Г. А. Балл,
А. Ф. Эсаулов, Е. Н. Машбиц и др.) позволил выделить в задаче по информатике следующие компоненты: условие задачи (исходные данные), вопрос задачи (требование), результат задачи, последовательность действий, которая привела к получению результата решения задачи. Каждый компонент задачи является известным либо неизвестным, на рис. 1 представлен возможный состав задач по информатике.

На основе анализа задач, приведенных в учебниках по информатике
(А. Г. Гейн, В. Г. Житомирский; О. В. Ефимова; Н. В. Макарова; А. В. Могилев, Н. И. Пак, Е. К. Хеннер; И. Г. Семакин, Е. К. Хеннер; Ю. А. Шафрин; Н. Д. Угринович, Л. Л. Босова и др.), было выявлено, что большая часть задач имеет традиционную формулировку: известно условие и вопрос задачи, необходимо построить последовательность действий, приводящую к верному результату.


Тип задачи

Компоненты задачи

Условие

(исходные данные)

Вопрос

Результат

Последователь-

ность действий

Задачи на проектирование последовательности действий

Задачи на перепроектирование последовательности действий (1P)

Ошибочная*

Задачи на проектирование
результата (2P)

Задачи на реконструкцию последовательности действий (1R)

Задачи на реконструкцию исходных данных (2R)

* В данном типе задач студенту предлагается ошибочная последовательность действий, заведомо не приводящая к верному результату.

Была построена типология задач с нетрадиционной формулировкой, решение которых предполагает перестройку известных способов решения, поиск неизвестных решающему закономерностей, способов действий. Основанием разделения задач с нетрадиционной формулировкой на четыре типа является набор известных решающему компонентов задачи.

При известных результате и условии задача относится к типу задач на реконструкцию последовательности действий (1R), при известных результате и последовательности действий – к типу задач на реконструкцию исходных данных (2R), при неизвестном результате и ошибочной последовательности действий – к типу задач на перепроектирование последовательности действий (1P), при неизвестных результате и вопросе – к типу задач на проектирование результата (2P). Исходя из характеристики качеств мышления, каждый выделенный тип задач по информатике был сопоставлен с качествами продуктивного мышления, на развитие которых он оказывает преимущественное влияние.

Был сделан вывод, что для того чтобы задача была направлена на развитие глубины ума, она должна быть составлена таким образом, чтобы учащийся в процессе решения задачи оперировал параметрами, выделял некоторые формальные атрибуты набора объектов, в зависимости от контекста заменял их на фактические значения. В соответствии с этим развитию глубины ума способствует решение студентами различных задач с традиционными и нетрадиционными формулировками, в которых предполагается работа с формальными параметрами.

Задачи, имеющие традиционную формулировку и направленные на развитие гибкости ума, должны быть сформулированы таким образом, чтобы обратить внимание решающего на процесс решения задачи, в отличие от ориентировки на результат. В процессе решения таких задач решающий понимает, что важен как результат, так и такие параметры решения, как трудоемкость, ресурсоемкость, рациональность, оригинальность. Для развития гибкости ума целесообразно применение задач с нетрадиционной формулировкой на реконструкцию исходных данных и последовательности действий. Отличительным признаком задач указанных типов является их направленность на актуализацию у решающего обратных мыслительных операций.

Pages:     | 1 || 3 | 4 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»