WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 | 2 || 4 | 5 |

В содержании ТП в ДНК клеток 5-го пассажа наблюдается вариабельность и отрицательная зависимость между содержанием ТП и числом пассажей культуры (k = - 0,7; р < 0,0001; N = 45). Весь период культивирования клеток можно условно разбить на два отрезка: «ранние пассажи» (5-31), когда наблюдается выраженное снижение содержания ТП в ДНК при делении клеток (k= - 0,53; р = 0,01; N = 20) и «поздние пассажи», когда содержание ТП в ДНК клеток незначительно изменяется в последующих генерациях клеток (k = - 0,33; р = 0,1; N = 25). На рис. 6а приведены данные по среднему содержанию ТП в ДНК клеток «ранних» и «поздних» пассажей. Для всех штаммов выявлено достоверное снижение содержания ТП в ДНК клеток «поздних» пассажей.

Изменение содержания РГ и уровня метилирования РГ. Сравнение среднего содержания РГ в ДНК клеток «ранних» и «поздних» пассажей демонстрирует тенденцию к уменьшению общего числа копий РГ в геномах фибробластов при репликативном старении (рис. 6б). В случае штаммов 2207 и 2206, которые содержат КМРГ, уменьшение статистически значимо. Геномы этих штаммов теряют соответственно примерно 36 % и 26 % всех копий РГ. Естественно предположить, что теряются, прежде всего, метилированные КМРГ, содержание которых в геномах клеток «ранних» пассажей близко к количеству теряемых на «поздних» пассажах копий РГ.

Рис. 6. Средние значения содержания ТП (а) и РП (б) в ДНК культивируемых фибробластов «ранних» (светлые столбики) и «поздних» (темные столбики) пассажей. * - различия в содержании РГ на «ранних» и «поздних» пассажах достоверны (р < 0,001).

Для того чтобы подтвердить это предположение, мы сравнили показатели метилирования РГ для штаммов 2206, 2207 и 2208 на пятом и последнем пассажах (соответственно 57-, 66- и 62-ом). Результаты представлены на рис. 7. На последних пассажах штаммов 2206 и 2207 наблюдается значительное снижение показателя М, в геноме практически не остается высокометилированных копий РГ.

Приведенные данные позволяют сделать вывод: при репликативном старении фибробластов кожи человека из генома удаляются неактивные кластеры высокометилированных РГ.

Повреждение рибосомных генов при репликативном старении

Мы сочли целесообразным подтвердить данные об изменении числа копий РГ при старении фибробластов, полученные с помощью метода дот-гибридизации, методом «real-time» ПЦР (рис. 8).

Рис. 8. Относительное содержание гена 18S рРНК и гена GAPDH в ДНК фибробластов 5-го (светлые столбики) и одного из последних (темные столбики) пассажей. Цифры под столбиками номер пассажа. * - различия в содержании анализируемых генов в ДНК достоверны (р < 0,001).

Анализ содержания фрагмента 18SрДНК длиной 269 п.н. в варианте «ТagMаn» ПЦР был проведен для ДНК штаммов 2206, 2207 и 2208, для которых мы наблюдали наибольшие изменения количества РГ при старении клеток. Для сравнения в тех же образцах ДНК анализировали содержание уникального гена GAPDH. В качестве внутреннего стандарта использовали ген Myd88. Содержание 18SрДНК в ДНК клеток «поздних» пассажей снижалось значительно сильнее, чем можно было ожидать, ориентируясь на данные количественной дот-гибридизации. Изменения в содержании гена GAPDH при старении были разнонаправленными, поэтому низкую эффективность ПЦР в случае рДНК клеток последних пассажей нельзя объяснить ингибиторами, которые могли бы содержаться в образцах ДНК клеток поздних пассажей. Трудно допустить, что на самом деле содержание РГ в геноме при старении снижается на порядок, тем более что по данным количественной дот-гибридизации потери не превышают 40 %. Низкую эффективность ПЦР в этом случае можно объяснить модификацией последовательности РГ в «старых» фибробластах. Известно, что при старении снижается эффективность ответа клеток на повреждающие воздействия. Некоторые виды повреждений в РГ репарируются с гораздо меньшей скоростью, чем аналогичные повреждения последовательностей генома, транскрибируемых РНК полимеразой II (Stevnsner T. et al., 1993). Однонитевые разрывы и модификация оснований приводят к тому, что, во-первых, снижается эффективность комплексообразования используемых в ПЦР праймеров с ДНК-мишенью, и, во-вторых, полимераза Taq1 не способна «прочитать» весь анализируемый фрагмент. Модификация последовательности РГ в клетке, по-видимому, должна сопровождаться снижением количества транскрибируемых копий РГ, поскольку повреждение ДНК является препятствием для работы РНК полимеразы 1. Таким образом, мы можем высказать предположение, что, несмотря на относительно небольшое снижение общего числа копий РГ при репликативном старении, количество неповрежденных копий, которое потенциально способно транскрибироваться, снижается в несколько раз. Это может являться одной из причин (возможно, решающей) блокирования пролиферации.

Влияние свойств комплекса РГ на функционирование культивируемых фибробластов кожи в условиях окислительного стресса, вызываемого хроматом калия

Репликативное старение, равно как и естественное старение организма, зависит от двух основных факторов – свойств генома и свойств среды культивирования (обитания). Действие неблагоприятных факторов среды может значительно ускорять старение и сокращает продолжительность пролиферативного периода культивируемых клеток. В англоязычной литературе введен специальный термин – стресс-индуцированное преждевременное старение (SIPS) (Toussaint O. et all., 2000). Стресс-индуцированное старение сопровождается значительным снижением длины теломеры уже на ранних пассажах культивируемых клеток (Toussaint O. et all., 2000). В нашей работе мы исследовали действие K2CrO4 на культивируемые фибробласты кожи здоровых людей, чтобы оценить, могут ли свойства комплекса РГ влиять на последствия действия на клетки неблагоприятных факторов среды, которые индуцируют сильный окислительный стресс и ускоряют процесс старения. Исследование влияния K2CrO4 на штаммы фибробластов 5-го пассажа, включало 2 этапа, которые были спланированы на основании проведенных ранее исследований кинетики действия K2CrO4 на фибробласты здорового донора (Вейко Н.Н., Терехов С.М. и соавтр., 2005):

  1. «Ранний» ответ на стресс, который мы тестировали после действия «малых» доз K2CrO4 (4 часа культивирования в присутствии 4 и 6 мкМ K2CrO4 );
  2. «Поздний» ответ, индуцированный заменой среды культивирования, после действия 4 и 6 мкМ K2CrO4 хромата в течение суток. Анализ проводили через 72 часа после смены среды.

«Ранний» ответ фибробластов на действие «малых» доз K2CrO4

Изменение количества клеточной РНК. Действие малых доз K2CrO4 вызывает увеличение количества РНК в культивируемых фибробластах 4-го пассажа здорового молодого донора (Вейко Н.Н., Терехов С.М. и соавтр., 2005). Анализ изменения количества РНК при действии малых доз хромата в клетках пяти штаммов в связи с параметрами, приведенными в таблице 2 (маркеры старения, свойства комплекса РГ, возраст), выявил только одну зависимость – от возраста донора (рис. 9). Очевидно, что в фибробластах, полученных от доноров 52 лет, наблюдается снижение количества РНК в присутствии хромата, в отличие от клеток молодых доноров, для которых количество РНК при действии K2CrO4 увеличивается на 40-70 %.

Рис. 9. Изменение количества РНК в клетках 5 (светлые столбики) и 22 (темные столбики) пассажей относительно контроля (5 и 22 пассаж без K2CrO4) при действии 4 мкМ K2CrO4 (4 часа).

Ранее было обнаружено, что эффект изменения количества РНК при действии 4 мкМ K2CrO4 снижается по мере увеличения числа пассажей, т.е. по мере старения культуры. Мы дополнили эти данные, сравнив изменения количества клеточной РНК при действии 4 мкМ K2CrO4 для пяти культур на 5 и 22 пассажах (рис. 9). Для всех штаммов на 22-м пассаже («постаревшие» клетки), за исключением 2206 (донору 21 год), наблюдается достоверное снижение количества РНК при действии 4мкМ хромата, т.е. тот же эффект, что и для фибробластов 5-го пассажа для 52-летних доноров. Полученный результат достаточно интересен. Наши данные и данные других авторов показали, что репликативное старение фибробластов не зависит от возраста донора кожи. Однако изменения количества РНК при действии окислителя указывают на то, что «молодые» клетки доноров старше 50 лет по некоторым свойствам похожи на «состарившиеся» клетки доноров младшего возраста. Возможно, эти особенности клеток «старых» доноров, не влияя на репликативное старение в нормальных условиях, будут влиять на скорость старения, обусловленного дополнительным стрессом.

Изменения уровня апоптоза. На рис. 10 приведены данные относительного изменения величин, характеризующих апоптоз, при действии на фибробласты малых (4*4 и 6*4 мкМ*ч) доз K2CrO4. Активность каспазы 3 имеет тенденцию к снижению при действии меньшей дозы окислителя (эффект достоверен только для штамма 2208) и немного возрастает при действии большей дозы. Ранее было показано, что количество клеток с признаками апоптоза при раннем ответе на действие 4мкМ хромата не увеличено по сравнению с контролем (Вейко Н.Н., Терехов С.М. и соавтр., 2005).

Рис. 10. Изменения активности каспазы 3 (темные столбики) и количества вкДНК (светлые) клеток 5-го пассажа в присутствии малых доз K2CrO4. За единицу приняты значения соответствующих параметров клеток в отсутствие K2CrO4.

На фоне незначительных изменений активности каспазы 3 при действии 6 мкМ K2CrO4 возрастает количество вкДНК. Исключение составляет штамм 2212, для которого наблюдается значительное снижение количества вкДНК по отношению к контролю при обеих дозах хромата. Одной из причин увеличения количества вкДНК может быть ускорение процесса деградации уже апоптотических клеток при действии окислительного стресса. Нельзя также исключить, что при действии малых доз окислителя в ответ на дополнительный стресс происходит синтез новых последовательностей генома (Gahan C.G. et al., 2008). Изменения количества вкДНК при действии K2CrO4 коррелируют с маркерами репликативного старения (МЧП и содержанием ТП в геноме (k = 0,85, р = 0,05, N=5)). Максимальное увеличение количества вкДНК при действии 4мкМ хромата наблюдается у клеток штаммов с высоким содержанием ТП, т.е. у штаммов с замедленным репликативным старением. Мы не обнаружили какой-либо зависимости между изменениями параметров, характеризующих апоптоз относительно контроля, и свойствами комплекса РГ.

«Поздний» ответ фибробластов на действие хромата калия

Известно, что смена среды культивирования индуцирует пролиферацию в контрольных субконфлуентных клетках и арест клеточного цикла и апоптоз в экспонированных клетках (Pritchard D.E., 2001). Исследование кинетики изменения маркеров апоптоза, проведенное ранее на фибробластах здорового молодого донора, показало, что максимальные изменения наблюдаются на 72 часу культивирования после смены среды, в которой клетки инкубировали 24 часа (4 и 6 мкМ K2CrO4) (Вейко Н.Н., Терехов С.М. и соавтр., 2005). В нашей работе мы воспроизвели эти условия.

Уровень апоптоза клеток через 72 часа после стимуляции апоптоза путем смены среды мы оценили по активности каспазы 3 и количеству фрагментов вкДНК в среде культивирования. Абсолютные значения активности каспазы 3 в клеточных лизатах экспонированных клеток зависят от маркеров старения (рис. 11): чем выше содержание ТП в геноме штамма (МЧП), тем меньшее число клеток подвергается апоптозу при действии окислительного стресса. Свойства комплекса РГ не влияют на абсолютные значения активности каспазы 3.

Однако относительные изменения активности каспазы 3 при действии K2CrO4 меньше в клетках, геном которых содержит большие количества АкРГ (рис. 12а) и не зависят от маркеров старения. Аналогичную зависимость мы наблюдали для другого маркера апоптоза – вкДНК (рис. 12б).

Относительные изменения количества вкДНК при действии 6 мкМ хромата по сравнению с контролем (клетки без хромата) тем больше, чем меньше активных копий РГ содержит геном.

Таким образом, интенсивность апоптоза клеток, вызванного окислителем, определяется маркерами старения (содержанием ТП, МЧП), которые отражают способность клетки противостоять окислительному стрессу (Fuster J.J. et al., 2006; Duan J. et al., 2005; Houben J.M. et al., 2008). Относительные изменения уровня апоптоза в культуре клеток при действии окислителя зависят от количества активных копий РГ в геноме. Можно ожидать, что из двух штаммов клеток, которые характеризуются одинаковыми маркерами старения, более устойчивой к индуцируемому внешним воздействием апоптозу будет культура с большим количеством активных копий РГ в геноме.

Рис. 12. Зависимость изменения активности каспазы 3 (а) и количества вкДНК (б) в экспонированных клетках относительно контроля от количества АкРГ в геноме штамма. Условия: а приводятся средние значения для двух концентраций хромата; б клетки инкубировали в присутствии 6мкМ хромата.

Количество АкРГ и активность нуклеаз в лизатах клеток

Исследования нуклеазной активности (НА) имеют прямое отношение к проблеме старения. С возрастом увеличивается уровень апоптоза клеток, возрастает количество вкДНК. В составе вкДНК накапливаются неметилированные CpG-богатые фрагменты, в том числе и рибосомные гены, которые могут выступать в роли лигандов для рецепторов TLR9, стимулируя синтез цитокинов и вызывая дополнительный окислительный стресс. С возрастом концентрация РГ в сыворотке крови возрастает, особенно при заболеваниях, связанных с увеличением гибели клеток (Вейко Н.Н. и соавтр., 2007, 2008). Поскольку количество неметилированных копий РГ пропорционально количеству активных копий, то чем больше количество АкРГ, тем большее количество фрагментов РГ – лигандов TLR9 будут переходить в состав вкДНК при апоптозе одной клетки. Для «нейтрализации» (путем гидролиза) этих фрагментов необходима повышенная НА. Анализируемые штаммы фибробластов представляют удобную модель для проверки предположения о влиянии количества АкРГ на уровень НА клеток.

Pages:     | 1 | 2 || 4 | 5 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»