WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     || 2 | 3 |

На правах рукописи

Гагарин Александр Геннадиевич

Плёнки BaxSr1-xTiO3 и структуры на их основе для перестраиваемых устройств СВЧ диапазона

Специальность 05.27.01 - Твердотельная электроника, радиоэлектронные компоненты, микро- и наноэлектроника, приборы на квантовых эффектах.

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата технических наук

Санкт-Петербург – 2007

Работа выполнена в Санкт-Петербургском государственном электротехническом университете “ЛЭТИ” им. В.И. Ульянова (Ленина).

Научный руководитель —

доктор технических наук, профессор Козырев А.Б.

Официальные оппоненты:

доктор технических наук, профессор Мироненко И.Г.

кандидат физико-математических наук, Ненашева Е.А.

Ведущая организация — Физико-технический институт
им. А.Ф. Иоффе, РАН.

Защита диссертации состоится “25” октября 2007 г. в  13  часов на заседании диссертационного совета Д 212.238.04 Санкт-Петербургского государственного электротехнического университета “ЛЭТИ” им. В.И. Ульянова (Ленина) по адресу: 197376, Санкт-Петербург, ул. Проф. Попова, 5.

С диссертацией можно ознакомиться в библиотеке университета.

Автореферат разослан “25”_сентября_2007 г.

Ученый секретарь

диссертационного совета Мошников В.А.

Общая характеристика работы

Актуальность темы.

В настоящее время, наряду с широко распространёнными полупроводниковыми и ферритовыми СВЧ устройствами, внимание специалистов привлекают устройства на основе сегнетоэлектрических (СЭ) материалов. Использование СЭ тонких плёнок позволяет улучшить такие характеристики приборов как быстродействие, рабочая мощность, СВЧ потери и мощность управления. Немаловажным фактором является простота конструкции и возможность использования интегральной технологии СЭ устройств, что определяет их низкую стоимость и делает СВЧ электронику с использованием СЭ перспективным направлением прикладных исследований.

Исследования, проведённые ранее, показали принципиальную возможность создания СЭ элементов, обеспечивающих частотную и фазовую перестройку радиоэлектронных устройств (фазовращателей, фильтров, линий задержки), используемых в системах связи и локации. Однако на сегодня СВЧ приборы на базе СЭ пленок существуют только в качестве лабораторных образцов, которые по ряду параметров уступают существующим традиционным аналогам. Для широкого использования СЭ в технике СВЧ необходимо решить ряд важных научно-технических задач, рассмотренных ниже.

Поиск оптимального состава СЭ плёнок и исследование их СВЧ свойств в широком диапазоне частот. Наиболее перспективным СЭ материалом для использования в устройствах СВЧ являются твёрдые растворы BaxSr1-xTiO3. В литературе встречается ряд публикаций, посвящённый свойствам данного композита для различных соотношений Ba и Sr. Как правило, приводятся данные по СВЧ свойствам рассматриваемых материалов в нижней части СВЧ диапазона (до частот (1015) ГГц). Однако перспективность устройств беспроводной локальной и спутниковой связи, работающих в сверхширокополосном режиме, делают необходимым проведение исследований свойств СЭ вплоть до частот 100 ГГц. Приведённые в литературе сведения носят отрывочный характер также и по выбору состава BaxSr1-xTiO3, соответствующего наилучшим СВЧ свойствам. Отсутствие сведений по оптимальности состава СЭ для СВЧ применений и данных о свойствах СЭ плёнок в широком диапазоне частот не позволяет эффективно проводить моделирование и реализацию СВЧ устройств. Поэтому одной из задач настоящей работы является поиск оптимального состава BaxSr1-xTiO3 плёнок, полученных по технологии ионно-плазменного (магнетронного) распыления, и получение данных об их свойствах в широком диапазоне частот.

Разработка перестраиваемых элементов на основе сегнетоэлектрических плёнок с управляющими напряжениями до 30 В. В настоящее время традиционными для СВЧ диапазона являются структуры планарной конструкции на основе СЭ плёнок (планарные конденсаторы, щелевые и копланарные линии). Применение таких структур целесообразно для устройств высокой СВЧ мощности, где повышенное постоянное или импульсное напряжение управления (сотни вольт) не является препятствием для их использования. Однако для применения в малосигнальных устройствах необходимо радикальное снижение управляющих напряжений до уровня, обычно используемого в полупроводниковой электронике (десятки вольт). В рамках планарной конструкции это ведёт к технологическим и конструктивным проблемам получения характерных топологических размеров менее 1 мкм. Таким образом, разработка технологичных СЭ структур с пониженным управляющим напряжением становится одной из ключевых задач использования СЭ элементов в малосигнальной СВЧ технике.

Одним из путей решения этой задачи является реализация плоскопараллельных структур типа «металл-диэлектрик-металл» (МДМ) на основе тонкой СЭ плёнки, в которых уменьшение толщины СЭ плёнки (менее 0.5 мкм) позволяет получить необходимый коэффициент управления (Cmax / Cmin  2) при напряжениях менее 30 В. Разработка таких структур для СВЧ диапазона требует оптимизации конструкции с точки зрения уменьшения влияния «паразитных» параметров и снижения СВЧ потерь в металлических электродах.

Исследование быстродействия сегнетоэлектрических тонкопленочных элементов. Для конкурентоспособной работы электрически перестраиваемых устройств СВЧ диапазона необходимы высокие скорости их переключения ( 1 мкс). Существует общепринятое мнение, что в параэлектрической фазе (T > TC) отсутствие доменной структуры позволяет достигать быстродействия, соизмеримого с временами осцилляции «мягкой» СЭ моды, то есть 10 –11 с. Ряд опубликованных работ, посвящённых исследованию нелинейных свойств СЭ при повышенном уровне гармонического СВЧ сигнала (интермодуляционные искажения, параметрические явления), на первый взгляд, полностью подтверждает эту точку зрения. Однако необходимо заметить, что все эксперименты, практически демонстрирующие безынерционный СВЧ отклик, проводились в условиях воздействия гармонических сигналов и не соответствовали режиму работы устройств при управлении униполярными импульсными сигналами. Именно такие режимы используются для кодирования и передачи информации в современных СВЧ устройствах. Поэтому исследование поведения СЭ элементов при импульсном режиме управления является актуальной задачей.

Разработка СВЧ фазовращателей на основе СЭ плёнок. Решение задачи создания СВЧ устройств на основе СЭ плёнок требует предварительной оценки параметров проектируемого устройства, исходя из электрофизических свойств СЭ перестраиваемого элемента. Как правило, оценка применимости СЭ элементов с точки зрения их СВЧ свойств проводится на основе параметра качества, предложенного проф. О.Г. Вендиком. Однако для окончательной разработки СВЧ устройств (например, фазовращателей) целесообразно учитывать особенности конструкции, определяющие диссипативные потери в её металлических частях. Необходимо подчеркнуть, что использование СЭ элементов с одинаковыми значениями параметра качества, но различной управляемостью и потерями ведёт к различным конструктивным решениям, например, к различной длине фазовращателя. Это, в свою очередь, приводит к изменению уровня СВЧ потерь в металлических элементах устройства. Таким образом, для оптимизации устройств необходимо получить соотношения, позволяющие установить связь между параметрами СЭ элемента (СЭ плёнки) и общими параметрами устройства с учётом различных источников СВЧ потерь (в металле и диэлектрике).

Для реализации устройств на основе СЭ плёнок для частот свыше 30 ГГц в ряде случаев целесообразно использование структур с распределёнными параметрами (регулярных линий передачи). Простота, малые размеры и хорошая совместимость подобных конструкций с элементами фазированных антенных решёток делают необходимым исследование характеристик щелевых линий с СЭ плёнками и фазовращателей на их основе в миллиметровой части СВЧ диапазона.

Целью работы явились исследование управляемости, диэлектрических потерь и быстродействия СЭ тонких плёнок и элементов на их основе в широком диапазоне частот, разработка перестраиваемых сосредоточенных управляющих элементов с напряжениями управления до 30 В, перестраиваемых распределённых структур и фазовращателей на их основе, предназначенных для использования в приборах СВЧ диапазона.

В связи с этим в данной работе решаются следующие задачи:

  • разработка методик измерений на частотах выше 30 ГГц, позволяющих определить диэлектрические потери и потери в металлических электродах в структурах на основе СЭ плёнок;
  • оптимизация состава плёнок BaxSr1-xTiO3 для обеспечения наибольшего параметра качества элементов и структур на их основе для СВЧ применений;
  • исследования СВЧ свойств СЭ плёнок BaxSr1-xTiO3 в широком диапазоне частот (160) ГГц, позволяющие прогнозирование параметров и реализацию СВЧ устройств выбранного поддиапазона;
  • анализ конструктивных и технологических факторов, влияющих на СВч параметры МДМ (Pt/BSTO/Cu) конденсаторов, и разработка их конструкции;
  • создание методики измерения быстродействия СЭ элементов в диапазоне от единиц микросекунд до сотен секунд;
  • определение быстродействия диэлектрического отклика плёночных BaxSr1-xTiO3 конденсаторов на импульсное напряжение и анализ факторов, влияющих на их быстродействие;
  • установление связи параметра качества перестраиваемого элемента с характеристиками СВЧ устройств, и выработка рекомендаций по выбору параметров СЭ плёнки и элементов на её основе, обеспечивающих требуемые характеристики СВЧ устройств;
  • определение волновых параметров и потерь щелевых линий передачи на основе плёнок BSTO в зависимости от геометрических размеров и свойств плёнок; а также разработка волноводно-щелевого фазовращателя для рабочей частоты 60 ГГц.

Для решения приведённых выше задач были разработаны новые методики для измерения:

  • СВЧ параметров сегнетоэлектрических плёнок в диапазоне (3070) ГГц с помощью распределённых структур без нанесения электродов (частично заполненный волноводный резонатор) и с нанесением электродов (резонатор на основе щелевой линии);
  • времени релаксации ёмкости СЭ конденсаторов с помощью СВЧ резонатора под действием периодических управляющих импульсов напряжения

Научная новизна работы:

  1. На основе исследования плёнок BaxSr1-xTiO3 различного состава (x = 0  0.8) показано, что плёнки Ba0.3Sr0.7TiO3 демонстрируют лучшие СВЧ свойства для практических применений.
  2. На основе разработанных электродных и безэлектродных методик показано, что для плёнок оптимального состава Ba0.3Sr0.7TiO3 с управляемостью K=1.52 тангенс угла диэлектрических потерь в диапазоне частот (160) ГГц лежит в интервале tg  = 0.0150.06.
  3. Для плёночных МДМ структур Pt/Ba0.3Sr0.7TiO3/Cr/Cu с управляемостью K = 2 при 30 В проведён СВЧ анализ, позволяющий разделить потери в плёнке сегнетоэлектрика и в металле электродов.
  4. Предложена и разработана оригинальная резонансная СВЧ методика исследования быстродействия и остаточных поляризационных явлений СЭ конденсаторов при условии короткого замыкания и холостого хода электродов, позволяющая измерять времена релаксации в пределах (106102) с.
  5. Показано, что медленные релаксационные явления (10100 с), наблюдаемые в сегнетоэлектрических элементах в параэлектрической фазе, обусловлены существованием объёмного заряда, локализованного в приэлектродных областях с повышенной дефектностью (10181019 см3).
  6. На основе измерения пороговых значений импульсного электрического поля, выше которого возникают медленные релаксационные процессы ёмкости СЭ конденсаторов, показано доминирующее влияние технологии формирования контакта металл/сегнетоэлектрик.
  7. Для электрически управляемых фильтров и фазовращателей установлена связь параметра качества СЭ перестраиваемого элемента с основными параметрами устройств; полученные выражения позволяют разделить вклад в параметры устройства потерь в элементе перестройки и в металлических элементах конструкции устройства.
  8. Разработан метод определения предельно достижимого параметра качества фазовращателя на основе линии передачи с СЭ плёнкой путём измерения характеристик резонатора на основе отрезка данной линии.

Практическая значимость работы:

  1. Отработана технология формирования СВЧ МДМ конденсаторов на основе тонкой BSTO плёнки; найден состав плёнок твёрдого раствора BaxSr1-xTiO3, обеспечивающий наилучшие параметры для СВЧ применений.
  2. Предложены методики измерения параметров структур на основе СЭ плёнок в диапазоне частот (3070) ГГц, позволяющие определять потери в СЭ плёнке и металлических элементах структуры.
  3. На основе эквивалентной схемы и экспериментальной проверки её корректности сформулированы рекомендации по разработке конструкции СВЧ МДМ конденсаторов.
  4. Разработаны рекомендации по технологическим условиям формирования контакта металл/сегнетоэлектрик в конденсаторах для улучшения их быстродействия.
  5. Разработан и испытан волноводно-щелевой фазовращатель на основе BSTO плёнки для работы на частоте 60 ГГц; фазовращатель продемонстрировал параметр качества 32 град/дБ, что на 10 град/дБ превосходит результаты для устройств на основе СЭ плёнок, описанных в литературе.

Научные положения, выносимые на защиту:

Pages:     || 2 | 3 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»