WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 | 2 ||

Флуоресцентные эмали дневного свечения представляют собой системы, в которых не только связующее, но и твердая фаза – дневные флуоресцентные пигменты – имеют полимерную природу. На устойчивость лакокрасочных материалов влияют электрические заряды поверхностей пигментов, наполнителей, а в случае водно-дисперсионных материалов - частиц полимерной дисперсии. Устойчивость дисперсии к флокуляции определяет множество технических показателей покрытия, в том числе совокупность оптических свойств. Для флуоресцентных ЛКМ сложность системы усугубляется различной химической природой частиц дисперсной фазы. Флуоресцентные пигменты, являющиеся твердыми растворами органических люминофоров в полимерной фазе, имеют электрический заряд. Неорганические пигменты и наполнители приобретают заряд за счет адсорбции компонентов из дисперсионной среды в соответствии с правилом Панета и Фаянса. Заряд частиц проявляется в виде электрокинетического потенциала (-потенциала), главным критерием величины которого является электрофоретическая подвижность. Для оценки устойчивости системы важен знак электрофоретической подвижности частиц дисперсной фазы. На такие технические характеристики покрытия, как блеск, чистота цвета, механическая прочность и адгезия, хорошая устойчивость к флокуляции однозначно оказывает положительное влияние. Для светимости или переизлучения однозначного ответа нет. С целью оценки влияния -потенциала компонентов системы на свойства покрытия были проведены электрокинетические исследования дисперсий наполнителей, флуоресцентных пигментов в водных средах при различных рН, а также дисперсий полимеров.

На рис.16 приведены результаты электрокинетических исследований для систем, содержащих красный и зеленый флуоресцентные пигменты и наполнитель.

Видно, что для системы, содержащей красный пигмент, зона несовместимости в пределах рН от 6 до 7,5, а для зеленого пигмента - от 6 до 8. В этой зоне композиция нестабильна, так как наполнитель имеет заряд, отличающийся по знаку от заряда частиц пигмента и латекса. Это подтверждается оценкой стабильности систем при различных рН. При рН=6 наблюдается сокоагуляция пигмента и наполнителя, что выражается в расслоении. Верхний слой над осадком представляет собой стабильную дисперсию полимера. При рН=7 происходит полная необратимая коагуляция системы, верхний слой над осадком - дисперсионная среда. При рН=9, когда знаки всех частиц дисперсной фазы одинаковы, происходит обратимое расслоение системы с образование легко редиспергируемого осадка пигмента и наполнителя.

Рис. 16. Зависимость электрофоретической подвижности от РН.

1 - красный флуоресцентный пигмент;

2 – зеленый флуоресцентный пигмент;

3 - карбонат кальция микронизированный;

4 - дисперсия стиролакрилового сополимера.

Рис. 17. – Разность спектров отражения в области спектра, близкой к максимальной чувствительности глаза, полученных при различном размещении монохроматора для зеленой флуоресцентной эмали, характеризующих флуоресценцию при рН=7(1) и рН=9(2)

Определяющим показателем при оценке оптических свойств флуоресцентных эмалей является чистота цвета и эффективность флуоресценции. Для водно-дисперсионных зеленых флуоресцентных эмалей наибольшее значение чистоты цвета в системе CIEL*a*b* (С*=81,7) соответствует рН=7. При этом наблюдается максимальная эффективность флуоресценции, которая имеет значение 24,2. Это соответствует зоне полной нестабильности системы, в которой наблюдается сокоагуляция наполнителя и полимерной дисперсии. Пигмент концентрируется на поверхности покрытия и без разбеливающего влияния наполнителя проявляет высокую чистоту цвета и эффективность флуоресценции. Однако, такой материал нестабилен при хранении. При рН>8 наблюдаются несколько меньшие значения чистоты цвета и эффективность флуоресценции (23,8). В процессе хранения происходит образование легко редиспергируемого осадка. Аналогичное соотношение оптических свойств и рН наблюдается для зеленого пигмента. На рис.17 показана зависимость эффективности флуоресценции от рН для зеленой эмали.

Из приведенных результатов вытекает необходимость компромисса между агрегативной и кинетической устойчивостью с одной стороны и оптическими показателями покрытия с другой, что достигается на границе зоны несовместимости.

6. Исследование влияния состава композиций на фосфоресценцию

Для исследования влияния наполнителя на продолжительность фосфоресценции покрытия были приготовлены композиции на основе акрилового пленкообразователя с содержанием люминофора 90 % от критического. Естественно предположить, что наполнители по химической природе являющиеся оксидом кремния, имеющим низкое поглощение в ультрафиолетовой области спектра, должны способствовать рассеянию излучения, возбуждающего фосфоресценцию по объему адгезированного полимерного слоя. На рис. 18 приведены кривые затухания фосфоресценции полимерного покрытия, наполненного кристаллофосфором, и покрытия, в котором кристаллофосфор на 20% заменен наполнителем.

Рис.18. Кривые затухания фосфоресценции

1 ­­– без наполнителя;

2 – наполнитель оксид кремния;

3 – наполнитель микроволластонит.

Как видно из зависимостей, введение наполнителей, особенно волластонита с игольчатой формой кристаллов, замедляет затухание. Механизм действия аналогичен рассмотренному в главе 3. Из данных, приведенных на рис. 19, следует, что введение волластонита до 35% не снижает светимость полимерного покрытия.

Рис.19. Влияние содержания микроволластонита на затухание фосфоресценции

1 – без наполнителя;

2 – 10%;

3 – 30%;

4 – 35%;

5 – 40%.

Одним из вариантов повышения эффективности фосфоресценции является использование в составе композиции флуоресцирующих красителей. Введение в состав композиции совместно с кристаллофосфором 4-бромо-бензиловый эфира 2-(4-метокси-бензоиламино)-бензойной кислоты, который характеризуется белым свечением, увеличивает параметры уравнения Беккереля для композиций, нанесенных на белую подложку, (B0 от 32,6 до 242, b от 0,156 до 1,498 и от 0.831 до 0.898). Это связано с явлением переизлучения.

Таким образом, повышение эффективности фосфоресценции покрытий возможно как с помощью введения наполнителей, не поглощающих ближнее ультрафиолетовое излучение, так и с помощью флуоресцентных красителей.

Выводы.

  1. С использованием результатов исследований разработаны и внедрены в производство полимерные композиционные материалы с заменой в их составе части флуоресцентных и фосфоресцентных пигментов наполнителями при достижении заданных эксплуатационных показателей.
  2. Разработаны, внедрены в производственную практику и включены в технические условия методики количественной оценки флуоресценции, основанные на спектрофотометрии с различной геометрией освещения и регистрации спектров, и фосфоресценции с использованием анализа уравнения Беккереля.
  3. Установлена математическая зависимость, адекватно описывающая влияние содержания пигмента в материале на флуоресценцию, позволяющая оптимизировать состав композиции.
  4. Показано, что введение белых наполнителей с коэффициентами преломления не более 1,8 снижает эффект самогашения, сдвигая максимум на спектре яркости в длинноволновую область спектра.
  5. Установлено, что использование наполнителей с анизодиаметрической формой частиц (пластинчатый флогопит и игольчатый волластонит) повышает эффективность флуоресценции и фосфоресценции наполненных полимерных покрытий.
  6. Установлена зависимость интенсивности флуоресценции и цветового тона полимерного покрытия от полярности растворителя, с использование которого оно сформировано. Показано, что повышение полярности вызывает гипсохромный эффект, а зависимость флуоресценции от полярности проходит через минимум, соответствующий диэлектрической проницаемости равной 15.
  7. Методом микроэлектрофореза определены значения изоэлектрических точек компонентов водно-дисперсионных флуоресцентных материалов, на основании которых установлены области их устойчивости и условия достижения максимальной эффективности флуоресценции.
  8. Установлено, что использование в составе композиций наполнителей, не поглощающих ближнее ультрафиолетовое излучение, увеличивает интенсивность фосфоресценции и снижает скорость затухания. Эффективность фосфоресценции также усиливается при использовании в композициях флуоресцентных красителей.

По материалам диссертации опубликованы следующие работы:

  1. Индейкина, А.Е. Оценка флуоресценции полимерных материалов / А.Е. Индейкина, О.А. Куликова, Т.А. Кузнецова // Лакокрасочные материалы и их применение, 2002, №5 с.7
  2. Индейкина, А.Е. Количественная оценка оптических свойств флуоресцентных материалов / А.Е. Индейкина, Е.А. Индейкин, О.А.Куликова // Лакокрасочные материалы и их применение 2005, №4 с. 34 – 36.
  3. Индейкина, А.Е. Влияние состава на свойства флуоресцентного полимерного покрытия / А.Е. Индейкина И.В. Голиков, Е.А. Индейкин, О.А. Куликова // Изв. вузов. Химия и хим. технология. - 2006 Т. 49, вып. 3. - с 107 – 109, Иваново 2006.
  4. Индейкина, А.Е. Эффективность фосфоресценции лакокрасочных покрытий и пигментов / А.Е. Индейкина, О.А. Куликова, И.В. Голиков // Лакокрасочные материалы и их применение, 2008, № 8, с. 22 - 23
  5. Индейкина, А.Е. Влияние электрокинетических свойств компонентов флуоресцентных композиций на оптические свойства покрытий / А.Е. Индейкина, О.А. Куликова, И.В. Голиков // Лакокрасочные материалы и их применение, 2009, № 5, с. 23 - 24
  6. Indeikin, E.A. Investigation of optical properties of fluorescent coatings / E.A.Indeikin, A.E.Indeikina, O.A.Kulikova, T.A.Kuznetsova // Double Lieson. v. 6, N 536, 2004, p.39.
  7. Индейкина, А.Е. Влияние состава флуоресцентных полимерных материалов на их оптические свойства / А.Е. Индейкина, О.А. Куликова, И.В. Голиков, Е.Ю. Лукашева // Полимерные композиционные материалы и покрытия: Материалы II международной научно-технической конференции. Ярославль, 17-19 мая 2005 г. – Ярославль: Изд-во ЯГТУ, 2005, с. 192-197
  8. Indeikin, E. Investigation of optical properties of fluorescent coatings E.Indeikin, A.Indeikina, O.Kulikova, T.Kuznetsova // Congress proceedings, Aix-en-Provence, 2004, v.3, p.1081-1085
  9. Indeikina, A.E. Influence of Fluoresccent Polymer Materials Composition jn the Optical Properties /А.E. Indeikina, O.A. Kulikova, I.V. Golikov // FATIPEC, Full Papers, Budapest, 2006, VII.P-9, p. 667 – 671.
  10. Индейкина, А.Е. Оценка свойств флуоресцирующих лакокрасочных покрытий. //А.Е.Индейкина, И.В.Голиков, Е.А.Индейкин. Восьмая международная научно-практическая конфернция «Лаки и Краски 2004». Состояние и перспективы развития. М.: 2004, с. 34.
  11. Индейкина, А.Е. Исследование оптических свойств флуоресцентных акриловых покрытий / А.Е. Индейкина, О.А. Куликова, И.В. Голиков // IX Международная Конференция по химии и физикохимии олигомеров. « Олигомеры IX». - Одесса. – 2005, с. 199
  12. Indeikina, A.E. Influence of Fluoresccent Polymer Materials Composition jn the Optical Properties /А.E. Indeikina, O.A. Kulikova, I.V. Golikov XXVIII FATIPEC Congress, Book of Abstracts Budapest, 2006, p.25
  13. Индейкина, А.Е. Исследование свойств флуоресцирующих полимерных покрытий / А.Е. Индейкина, О.А. Куликова, И.В.Голиков // Современные проблемы науки о полимерах. III Санкт-Петербургская конференция молодых ученых с международным участием. Санкт - Петербург 2007.
Pages:     | 1 | 2 ||






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»