WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     ||
|

Поскольку в области низкого содержания влаги каждым элементарным звеном целлюлозы связывается одна молекула воды, то общее количество воды, локализуемой доступными областями сухой хлопковой целлюлозы, составляет около 39,9 мг/г. Из них 15,4 мг/г приходится на долю дезорганизованных участков кристаллической фазы.

При анализе кинетической кривой сушки хлопковых волокон при 20оС (рис. 1) выявлено резкое замедление десорбционного процесса, начинающееся с влагосодержания (15 мг/г), которое количественно соответствует сорбционной емкости дезорганизованных участков кристаллической фазы. Предложено использовать данную форму прочно связанной влаги в качестве количественной характеристики структурной неравновесности высушенной целлюлозы. Наиболее трудно вода удаляется из дефектов поверхностного слоя кристаллитов, что обусловливает наличие в целлюлозных материалах остаточной влаги в широком интервале температур десорбции. Более низкая диффузионная проницаемость дезорганизованных участков поверхностного слоя кристаллитов подтверждает предположение о более высоком уровне их структурной упорядоченности.

Рис. 1. Кинетическая кривая десорбции воды из хлопковых волокон при 20оС

На основе сорбционных измерений установлено, что заполнение данных неравновесных структурных образований происходит уже на начальном этапе влагопоглощения. Выявлено также, что происходящее в наибольшей степени на начальном участке изотермы изменение соотношения между кристаллическими и аморфными областями влияет на кинетические параметры установления сорбционного равновесия в системе. Снижение диффузионной проницаемости хлопковых волокон приводит к тому, что кинетические кривые их влагопоглощения в диапазоне р/ро=0–0,1 относятся к псевдонормальному типу, характеризующему сорбционные процессы с уменьшающимся во времени коэффициентом диффузии.

Отмечен метастабильный характер существования дезорганизованных участков кристаллической фазы, которые возникают и сохраняются в целлюлозе только в условиях действия внутренних напряжений. При повторном увлажнении в результате пластифицирующего воздействия воды происходит релаксация этих напряжений, и структура хлопковой целлюлозы возвращается в равновесное состояние. Соответственно, временный характер имеет и возникаюшая при сушке доступность части кристаллической фазы. Показана необходимость учета изменений в соотношении между кристаллическими и аморфными областями целлюлозы при варьировании ее влажности для более корректных расчетов различных сорбционных характеристик.

3.2. Исследование проявлений структурной микронеоднородности в релаксационном спектре целлюлозы

В данной части работы обосновывается новый подход к интерпретации молекулярной природы некоторых релаксационных переходов в целлюлозе, который предполагает учет ее структурной микронеоднородности. В рамках развиваемой концепции факт проявления нескольких релаксационных переходов в определенных температурных областях связывается с возможностью ступенчатого «размораживания» однотипных молекулярных движений в надмолекулярных образованиях, различающихся по своей структурной организации.

Рис. 2. Зависимость количества остаточной влаги в хлопковых волокнах от температуры десорбции

Путем экстраполяции температурной зависимости количества остаточной влаги в хлопковых волокнах (рис. 2) к оси температур определено температурное положение (52оС) релаксационного перехода, который с позиций развиваемого подхода интерпретирован как проявление локальной конформационной подвижности в дефектах поверхностного слоя кристаллитов, из которых вода удаляется на последней стадии десорбции.

Методом ДСК установлено также наличие в хлопковой целлюлозе низкотемпературных релаксационных переходов при -10 и +24оС. Первый из них, согласно общепринятой трактовке, соответствует проявлению молекулярной подвижности локального типа в аморфных областях, а второй, исходя из выявленной структурной микронеоднородности сухой хлопковой целлюлозы, отнесен к ее развитию в аморфизованных при сушке участках поверхностного слоя кристаллитов.

Таблица 2

Значения скачка теплоемкости (Ср) в высокотемпературных релаксационных переходах целлюлозных волокон

Тип

волокна

Степень кристалличности, %

Температура

перехода, ОС

Ср,,

Дж/г·град

Хлопковое

69

115

202

0,10

0,17

Вискозное

38

126

199

0,14

0,11

При анализе экспериментальных кривых ДСК различных целлюлозных волокон установлено проявление в них релаксационных переходов в температурных интервалах 115-130оС и 195-205оС. Сопоставление расчетной характеристики (Ср) со степенью кристалличности исследованных волокон (таблица 2) дает основание предполагать взаимосвязь перехода при 115-130оС с аморфными областями, а перехода при 195-205оС – с кристаллической фазой.

Для уточнения молекулярной природы релаксационного перехода при 115-130оС проведены эксперименты по крашению тканых целлюлозных материалов с использованием специальной методики, построенной таким образом, чтобы диффузионный процесс в системе волокнообразующий полимер - краситель активировался только за счет подвода термической энергии.

Из анализа хода кинетических кривых термоактивируемого крашения образцов тканей из хлопковых и гидратцеллюлозных волокон в температурном диапазоне 110-170оС (рис. 3) следует, что изменение начальной интенсивности их окраски наблюдается при температурах выше 126 и 129оС, соответственно. Полученные результаты доказывают, что переход при 115-130оС связан с взаимосогласованной конформационной подвижностью в аморфных областях целлюлозы, поскольку именно ее проявление обеспечивает создание флуктуационного свободного объема, необходимого для диффузии крупных органических молекул.

Рис. 3. Изменение светлоты окраски образцов х/б ткани Миткаль (а) и вискозной ткани (б) с нанесенным при пропитке красителем (прямой ярко-голубой светопрочный) в ходе обработки горячим воздухом.

При анализе зависимости количества трудно удаляемой воды из хлопковых волокон от температуры сушки выявлена температурная область (120-125оС), начиная с которой в высушиваемом целлюлозном материале не происходит образования данной формы прочно связанной влаги. Это подтверждает взаимосвязь проявляемого в этом диапазоне температур релаксационного перехода с развитием в аморфных областях взаимосогласованной конформационной подвижности глюкопиранозных звеньев. Ее наличие обеспечивает условия для осуществления благоприятных структурных перестроек в ходе происходящего при десорбции уменьшения объема системы полимер-вода при любом соотношении компонентов, способствуя тем самым отсутствию в высушенных волокнах внутренних напряжений.

Рис.4. Температурная зависимость межплоскостного расстояния d002 в хлопковой целлюлозе

При изучении изменений кристаллической структуры хлопковых волокон при нагревании с помощью метода РСА выявлен излом на зависимости межплоскостного расстояния d002 от температуры (рис.4). Этот факт позволяет отнести переход при 190-200оС к проявлению молекулярной подвижности в поверхностном слое кристаллитов целлюлозы. Ее развитие происходит в термических дефектах кристаллитов, которые образуются под действием растягивающих напряжений, возникающих из-за различий в коэффициентах теплового расширения аморфной и кристаллической фаз.

3.3. Изучение влияния структурно-релаксационного состояния целлюлозных материалов на их реакционную способность в реакции термоокисления

Для зондирования молекулярной подвижности в аморфных областях целлюлозы использована реакция взаимодействия ее с кислородом. Исходя из специфической особенности целлюлозы изменять цвет в процессе окисления, предложен удобный способ экспериментального наблюдения за его ходом с помощью цветовых характеристик, легко определяемых методами отражательной колориметрии и спектроскопии. В качестве количественной характеристики, пропорциональной концентрации образующихся хромофоров, применен параметр желтизны b.

Ход температурной зависимости параметров желтизны различных тканых целлюлозных материалов (рис. 5), достигнутых при одинаковой продолжительности, но в условиях различных температур обработок горячим воздухом, указывает на заметное увеличение степени пожелтения образцов, начиная с температур 115-125оС. Начало процесса термоокисления в этом температурном интервале позволяет отнести проявляемый в нем релаксационный переход к неупорядоченным участкам целлюлозы, которые первыми вступают во взаимодействие с реагентами. Поскольку механизм реакции термоокисления целлюлозы связан с образованием свободных радикалов, то, очевидно, что резкое повышение ее реакционной способности может быть связано только с проявлением молекулярной подвижности кооперативного типа.

Рис. 5. Влияние температуры на величину параметра желтизны b образцов различных тканых целлюлозных материалов при постоянном времени обработки (2 часа)

Реакция окисления целлюлозы кислородом воздуха была использована также для оценки характера дислокации доступных участков кристаллической фазы после высушивания.

Рис. 6. Влияние промежуточных операций увлажнения и высушивания на степень пожелтения образцов х/б ткани в ходе термоокисления при 150оС:

1 - без обработок;

2 – с обработкой после каждых 2 часов термоокисления

Результаты термоокисления образцов хлопчатобумажной ткани с различной предварительной подготовкой показывают (рис. 6), что реакция более эффективно протекает в условиях, когда после двухчасовой термообработки образец подвергается смачиванию водой и высушиванию (кривая 2). Это свидетельствует о статистическом характере происходящих в ходе сушки структурных изменений. В этом случае после каждого высушивания доступными для молекул кислорода становятся все новые участки поверхностного слоя кристаллитов. Поэтому у многократно увлажняемого и высушиваемого образца в реакцию окисления вовлекается больший объем целлюлозной матрицы по сравнению с образцом, структура которого в ходе реакции не изменялась (кривая 1).

3.4. Использование структурно-релаксационной концепции для прогнозирования изменения свойств и поведения хлопковой целлюлозы при увлажнении

В данном разделе приведены результаты оценки влияния поглощенной воды на ряд практически важных свойств хлопковых волокон и прослежена взаимосвязь наблюдаемых закономерностей с изменениями структуры и релаксационного состояния увлажняемой хлопковой целлюлозы.

Близость температур начала проявления локальной конформационной подвижности (-релаксация) в аморфных (-10оС) и аморфизованных при сушке (+24оС) участках целлюлозы к температурной области переработки целлюлозного сырья (20-30оС) обусловливает низкую устойчивость сухих хлопковых волокон к изгибам и кручению, что затрудняет их переработку в процессах прядения. В результате пластифицирующего воздействия сорбированной влаги происходит снижение температур -переходов и облегчается возможность взаимной перегруппировки звеньев макромолекул под влиянием внешних механических полей. Благодаря этому, возникающие напряжения более равномерно распределяются между отдельными цепями, что предотвращает хрупкое разрушение волокон. Увеличение эластических свойств отражает такая характеристика как разрывное удлинение нитей: по мере увлажнения наблюдается его рост (рис. 7а).

Рис.7. Зависимость разрывного удлинения (а) и разрывной нагрузки (б) хлопчатобумажных нитей от влажности

При увлажнении хлопка проявляется еще один фактор, улучшающий его перерабатываемость, который связан с возрастанием прочности волокон при увеличении содержания сорбированной влаги (рис. 7б). При переходе от сухих образцов к образцам с предельной гигроскопичностью (~20% влаги) разрывная нагрузка увеличивается на ~25%. В данном случае поглощаемая вода снижает температуру стеклования доступных структурных областей,

что приводит к релаксации в них внутренних напряжений, накопленных в ходе переработки и сушки. При этом восстанавливается наиболее равновесное структурное состояние, характеризующееся высокой степенью ориентации держащих нагрузку макромолекулярных цепей.

В интервале влажности волокон от 0 до 1,5% величины разрывной нагрузки и разрывного удлинения возрастают в меньшей степени, чем при дальнейшем увлажнении. Наряду с сорбционными измерениями, эти данные также подтверждают вывод о предпочтительном поглощении первично сорбируемой влаги дезорганизованными участками поверхностного слоя кристаллитов. Только после их насыщения начинается активная сорбция воды аморфными областями, которые ответственны за изменение деформационных свойств и механическое поведение волокон.

Выявлено повышение коэффициента трения скольжения хлопчатобумажных нитей по металлу по мере увлажнения. Высказано предположение, что причиной усиления молекулярного сцепления контактирующих поверхностей может быть повышение подвижности макромолекул. Это подтверждает, например, тот факт, что наиболее заметное увеличение данной характеристики фрикционных свойств наблюдается в той области относительной влажности воздуха (=80-85%) и диапазоне влажности хлопковых волокон (=11-11,5%), где при температуре эксперимента (20оС) в аморфных областях целлюлозы развивается взаимосогласованная подвижность кинетических элементов.

Pages:     ||
|



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.