WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 |   ...   | 2 | 3 ||

CH3O

C4H9

39,38

40,89

42,32

C2H5O

C4H9

39,44

40,99

42,43

C6H13O

CH3

39,68

41,04

42,73

C2H5O

OCOC6H13

42,79

Представленные выше результаты расчетов нуждаются в независимом экспериментальном подтверждении. Учитывая, что следствием донорно-акцепторных взаимодействий является перераспределение электронной плотности во взаимодействующих молекулах, нами были проанализированы зависимости химических сдвигов 13С ОШ от концентрации уксусной кислоты в растворе. Эти данные однозначно свидетельствуют об участии электронной пары атома азота мостиковой азометиновой группы в образовании межмолекулярной водородной связи –СООН…N=CH, тогда как спектральных проявлений вторичного Н-связывания с участием атомов кислорода уксусной кислоты и атомов водорода ароматических колец зафиксировать не удалось. В связи с этим в качестве спектральных индикаторов слабых вторичных взаимодействий были выбраны иные параметры спектров ЯМР 13С - времена ядерной спин-решеточной релаксации (T1) и ядерный эффект Оверхаузера (ЯЭО).

Анализ эволюции времен T1 ядер углерода ОШ при образовании Н-комплексов свидетельствует о преобладающем влиянии времен корреляции на скорость диполь-дипольной релаксации. При этом последняя увеличивается для всех “протонированных” ядер углерода вследствие замедления молекулярных переориентаций при Н-связывании ОШ с протонодонором, что подтверждает образование Н-комплексов, но не может служить однозначным свидетельством непосредственного участия ароматических протонов в этом процессе. Это обусловило необходимость поиска других экспериментальных свидетельств образования структур, представленных на рис. 12.

Таким параметром может явиться ядерный эффект Оверхаузера (ЯЭО), сопутствующий облучению протонов в экспериментах по наблюдению спектров ЯМР 13С с полным подавлением спин-спинового взаимодействия 13С-1Н. ЯЭО обусловлен вкладом протонов в спин-решеточную релаксацию ядер 13С, причем подавляющий вклад в случае больших, относительно жестких молекул вносит диполь-дипольная релаксация 13С-1Н. В этом случае преобладание одного канала релаксации, включающего ядро 1Н, непосредственно связанное с рассматриваемым ядром 13С, делает ядерный эффект Оверхаузера заведомо более селективным по отношению к состоянию протона, вовлекаемого в сильные специфические взаимодействия с уксусной кислотой.

В связи с этим, нами были определены значения ЯЭО ароматических ядер углерода ЭББА (34) С2,3, С4,5, С9,10 (рис. 1), непосредственно связанных с протонами путем измерения интегральной интенсивности сигналов в присутствии и отсутствии широкополосной развязки от протонов (=(I-Io)/I0) (табл.5).

Табл. 5

Величины ЯЭО на ядрах углерода в 1М растворе ЭББА в CDCl3 без добавления и с добавлением 1М уксусной кислоты

C2,3

C4,5

C9,10

(CDCl3)

1,77

1,53

1,98

(CDCl3+УК)

1,67

1,21

1,59

-0,10

-0,32

-0,39

/(CDCl3), %

-5,65

-20,92

-19,70

Полученные данные, представленные в табл. 5, свидетельствуют о том, что образование Н-комплекса ЭББА - уксусная кислота сопровождается существенным снижением значения ЯЭО для сигналов C4,5 и С9,10 (на 20%) по сравнению с незначительным понижением величины для С2,3 (5,7%). Данный экспериментальный факт, на наш взгляд, обусловлен вовлечением протонов, непосредственно связанных с С4 и С9 в межмолекулярную водородную связь с уксусной кислотой (рис. 12), что сопровождается значительным возмущением флуктуаций магнитных моментов взаимодействующих ядер 13С-1Н и, как следствие, изменением условий диполь-дипольной спиновой релаксации с участием непосредственно связанных ядерных спинов.

Квантово-химические расчеты показывают, что введение электронодонорных заместителей в R1- или R2- положение увеличивает прочность H-связи, а введение электроноакцепторных заместителей уменьшает ее. Эта зависимость иллюстрируется корреляцией между константами Гаммета для пара-заместителей и рассчитанными энергиями связи конформации C (рис. 13).

Полученные результаты расчетов позволяют сравнить значения энергии связи ОШ...протонодонор с соответствующими константами комплексообразования в жидкокристаллическом состоянии. На рис. 14 показано соотношение между рассчитанными энергиями связи и константами комплексообразования для четырех мезогенных азометинов, полученными экспериментально из данных по параметру порядка уксусной кислоты в нематических растворах азометинов. Степень корреляции оказалась достаточно невысокой (R=0,92), что, по-видимому, обусловлено разными условиями эксперимента при определении величин Кэксп и Етеор, в частности, сильным влиянием параметра ориентационного порядка жидкого кристалла на устойчивость Н-комплексов, которое не учитывалось в ходе квантово-химических расчетов.

Выводы

1) С целью обеспечения высокой производительности квантово-химических расчетов разработана компьютерная программа “Chemcraft”. Программа предоставляет возможности для быстрого создания входного файла для расчета и графического отображения его результатов.

2) Проведены квантово-химические расчеты структуры оснований Шиффа с различными терминальными заместителями. Адекватность оптимизированных молекулярных структур подтверждена рассчитанными на их основе спектрами ЯМР 13С и соотнесением с экспериментальными спектрами в растворах и изотропно-жидкой фазе, как полученными в работе, так и описанными в литературе. Показано, что результаты квантово-химических расчетов точнее описывают структуру оснований Шиффа в жидкой фазе, чем рентгеноструктурные данные для кристаллической фазы.

3) Изучена взаимосвязь между конформационным и электронным состояниями оснований Шиффа. Установлено, что акопланарность “жесткого” ядра азометинов оказывает меньшее влияние на распределение электронной плотности, чем характеристики заместителей.

4) Проведены квантово-химические расчеты компонент молекулярной поляризуемости и оценка адекватности полученных результатов по экспериментальным данным. Установлено, что приемлемая оценка анизотропии молекулярной поляризуемости может быть проведена с использованием приближения аддитивности поляризуемости заместителей и “жесткого” ядра бензилиденанилина. Показано, что квантово-химические данные по молекулярной поляризуемости мезогенных оснований Шиффа могут быть использованы для прогнозирования термической устойчивости их мезофаз.

5) Проведен квантово-химический расчет структур Н-комплексов оснований Шиффа с уксусной кислотой, отличительной особенностью которых является участие в образовании водородной связи не только электронодонорного атома азота мостиковой группы, но и находящихся в орто-положении к ней ароматических атомов водорода как протонодоноров.

6) Методом ЯМР измерены времена спин-решеточной релаксации ядер 13С 4-этоксибензилиден-4’-бутиланилина (ЭББА) и его комплекса с уксусной кислотой в растворе. Установлено, что ускорение диполь-дипольной релаксации ароматических ядер углерода при образовании комплекса обусловлено увеличением времени молекулярной переориентации.

7) Изучено влияние комплексообразования с участием основания Шиффа на ядерный эффект Оверхаузера (ЯЭО), проявляемый в спектрах ЯМР 13С при подавлении спин-спинового взаимодействия с протонами. Зафиксировано существенное снижение величины ЯЭО при вовлечении ароматических протонов в многоцентровую водородную связь с кислотой, что служит экспериментальным подтверждением структуры Н-комплексов, полученных путем квантово-химических расчетов.

8) Проведена оценка влияния электронных свойств терминальных заместителей на устойчивость Н-комплексов оснований Шиффа, получена устойчивая корреляция между энергией образования комплексов и пара-константами Гаммета. Показано качественное соответствие энергетических параметров устойчивости, полученных квантово-химически, и экспериментальных констант комплексообразования в жидкокристаллическом состоянии мезогенных производных бензилиденанилина.

Основное содержание работы изложено в следующих публикациях:

1. Журко, Г. А. Использование квантовохимических расчетов для изучения молекулярной структуры некоторых нематических оснований Шиффа. / Журко Г. А., Александрийский В. В., Бурмистров В. А. // Жидкие кристаллы и их практическое использование. – 2005. – N1. - с.13-22.

2. Журко, Г. А. Конформационное состояние производных бензилиденанилина по данным неэмпирических расчетов и спектроскопии ЯМР. / Журко Г. А., Александрийский В. В., Бурмистров В. А. // Журнал структурной химии. – 2006. – т.47 – N4. – с. 642-647.

3. Журко, Г. А. Структура и молекулярная поляризуемость мезогенных оснований Шиффа по данным квантовохимических расчетов. / Журко Г. А., Исляйкин М. К., Бурмистров В. А., Александрийский В. В. // Журнал структурной химии. – 2007. – т.48 – N3. – с.485-491.

4. Журко, Г. А. Конформационное состояние производных бензилиденанилина по данным ЯМР 13С и квантово-химических расчетов / Журко Г. А., Александрийский В. В., Бурмистров В. А. // IV Всероссийская конференция “Новые достижения ЯМР в структурных исследованиях”, Казань, 4-7 апреля 2005, стр.64.

5. Alexandriiskii, V. V. Structure and stability of liquid crystals – proton donor H-complexes in solutions by 13C NMR spectroscopy and semi-empirical AM1 method data / Alexandriiskii V. V., Burmistrov V. A., Isliyakin M. K., Zhurko G. A. // Intern. Symp. and Summer School “Nuclear Magnetic Resonance in Condensed Matter”, 3rd Meeting “NMR in Heterogeneous System”. Saint Petersburg, Petrodvorets, Russia, 9-13 July 2006, p.50.

Pages:     | 1 |   ...   | 2 | 3 ||






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»