WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 | 2 ||

Таким образом, сделано заключение, что система «железнодорожный путь – тоннель» оказывает влияние на АЧХ ускорений кузова в области частот 16–20 Гц. Амплитуды ускорений в этой области частот составляют 30% от уровня ускорения при галопировании кузова: наибольшее влияние на колебания кузова и приведенной массы тоннеля оказывают колебания неподрессоренных масс тележки совместно с массами пути и тоннеля с частотами 40–60 Гц.

Учитывая значительное влияние совместных колебаний приведенных масс пути и тоннеля, как на колебания экипажа, так и тоннеля, исследовано влияние уменьшения неподрессоренной массы тележки (колесной пары) на ускорение приведенной массы тоннеля.

На рис. 8 приведены полученные результаты, из которых следует:

1 Уменьшение в два раза массы колесной пары приводит к уменьшению ускорения приведенной массы тоннеля как при схеме связи буксы с рамой тележки №1, так при схеме №5. Для тележки с буксовыми связями по схеме №5 снижение ускорений приведенной массы тоннеля происходит на 36%, а при схеме №1 на 28%.

2 На ускорения тележки и кузова снижения неподрессоренной массы практически не влияет.

Уменьшение в два раза жесткости буксового подвешивания практически не снижает ускорения тоннеля при тележке по схеме №1, но на 10% снижает ускорение приведенной массы тоннеля при тележке по схеме №5.

Таким образом, применяя колесные пары малого диаметра колес и уменьшенную жесткость первичного рессорного подвешивания в тележке при связи буксы с рамой по схеме №5, можно обеспечить снижение вибрации приведенной массы тоннеля при динамических воздействиях подвижного состава.

ЗАКЛЮЧЕНИЕ

1 Анализ существующих конструкций тележек для пассажирского подвижного состава магистральных железных дорог и метрополитена показал, что в конструкциях связей букс с рамой тележек широко используются рычажные механизмы первого и второго рода.

2 Вертикальные колебания вагона метрополитена с буксовыми связями со схемами рычагов первого и второго рода описаны двумя системами из 14 обыкновенных дифференциальных уравнений второго порядка.

3 Для оценки динамического воздействия на тоннель и его рельсовый путь колебаний вагона метрополитена в диапазоне частот до 100 Гц исследованы динамические свойства системы «рельсовый путь–участок тоннеля», имеющей свыше 300 тыс. степеней свободы и обоснованы параметры дискретной модели этой системы, состоящей из шести дискретных масс.

4 При одинаковых приведенных к оси колесной пары упруго-диссипативных параметрах тележек с буксовыми связями по схемам рычагов второго рода амплитудно-частотные характеристики ускорений кузова и тележек не изменяются.

5 Амплитудно-частотные характеристики ускорений вагона метрополитена с буксовыми связями по схемам рычагов первого рода, но с горизонтальным расположением буксовых пружин имеют в области частот колебаний кузова наименьший уровень.

6 Для снижения ускорений кузова вагона метрополитена, рамы тележки и воздействия их на тоннель необходимо выбирать отношение статических прогибов во вторичном и первичном подвешивании в диапазоне 1–1,5.

7 На основании анализа экспериментальных неровностей на железнодорожном пути магистральных железных дорог и рельсовом пути метрополитена получена полиномиальная функция спектральной плотности неровностей, отражающая наличие коротких неровностей пути в метрополитене типа «волнообразного износа».

8 Результаты моделирования движения вагона метрополитена с разными скоростями по пути с волнообразным износом позволили рекомендовать направления снижения динамических воздействий на пассажиров и тоннель, заключающиеся в следующием:

– уменьшение неподрессоренных масс тележки за счет применения колесных пар с колесами малого диаметра;

– уменьшение жесткости буксового подвешивания за счет применения пружин, большой гибкости.

9 Для выбора рациональных геометрических параметров витых пружин получена аналитическая функция, связывающая статических прогиб пружины с ее габаритными и прочностными характеристиками.

10 Обоснованы требования к тележке вагона метрополитена для города Янгона с учетом габаритных ограничений (ширина колеи 1000 мм) и малого воздейстивия на тоннель и заключающиеся в следующем:

– тележка должна иметь малые диаметры колес колесных пар (500–600 мм);

– первичное рессорное подвешивание должно проектироваться при условии соблюдения отношения статического прогиба в диапазоне 1–1,5;

– для возможности размещения гибких пружин буксового подвешивания необходимо применять связь буксы с рамой тележки по схеме 5 (рычаг первого рода с горизонтальным расположением пружин буксового подвешивания).

Основные положения диссертации опубликованы в следующих работах:

  1. Тэй Аунг, «Выбор кинематической схемы связи буксы с рамой тележки и параметров рессорного подвешивания вагона метрополитена города Янгона», 9-я научно-парактическая конференция «Безопасность движения поездов», Труды МИИТа, 2008, с. V–31-V–32.
  2. Тэй Аунг, «Влияние рычажных буксовых связей на динамические показатели экипажей», Естественные и технические науки, №.2, Москва, 2009, с. 405-407.
  3. Тэй Аунг, «Выбор параметров колес и рессорного подвешивания тележек с рычажными буксами», Мир Транспорта, №. 2, Москва, 2009, с. 40-43.
  4. Тэй Аунг, «Рессорное подвешивание тележек с рычажными буксами», Железнодорожный Транспорт, №. 7, Москва, 2009, с. 54.

Тэй Аунг

ОБОСНОВАНИЕ СХЕМЫ РЕССОРНОГО ПОДВЕШИВАНИЯ ВАГОНОВ МЕТРОПОЛИТЕНА ДЛЯ КОЛЕИ 1000 мм

Специальность 05.22.07 –

Подвижной состав железных дорог, тяга поездов и электрификация

Подписано к печати _____________ Формаг 6080 1/16

Объем 1,5 п.л. Заказ № _________ Тираж 80 экз.

Печать офсетная. Бумага для множительного аппарата.

Типография МИИТ 127994, г. Москва, ул. Образцова, д. 9, стр. 9

Pages:     | 1 | 2 ||






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»