WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

загрузка...
   Добро пожаловать!

Pages:     | 1 |   ...   | 2 | 3 || 5 |

1.554

355.9(24)

a среднее значение расстояния в кристалле; b полная погрешность в величинах межъядерных расстояний, рассчитанная по формуле =(масш2+(2.5 МНК)2)1/2, где масш =0,002r; c погрешность в величинах валентных углов, равная 2,5МНК; d погрешность в величинах торсионных углов, равная МНК.

3.4.2. Структурный анализ комплексов Ni(acacen), Cu(acacen).

Анализ электронографических данных выполнен в предположении, что в паре присутствуют молекулы одного сорта. При составлении Z-матрицы для построения геометрической модели молекулы принято, что: молекула имеет ось симметрии С2 (рис. 1); метильные группы имеют локальную симметрию С3v; сумма валентных углов при атомах С6, С7 и С8 составляет 360°.

Для уменьшения корреляции в процессе МНК - анализа независимо варьируемыми были выбраны: 6 типов межъядерных расстояний C6-C8,

Рис.6. Модель комплекса М(acacen)

N-C, M-N, M-O, C-H, O-C, 9 валентных углов: N2MХ, O4MХ, C6O4M, C7N2M, C12N2M, H20C14C7, H26C16C6, H32C12C13, H32C12N2,

7 торсионных углов (O4MХN2), (C6O4MХ), (C7N2MХ), (C8C6C7O4), (C12N2MN3), (H20C14C7C8), (H26C16C6C8). Эти параметры вместе с одиннадцатью группами амплитуд для Ni(acacen) и тринадцатью для Cu(acacen) варьировались в процессе МНК–анализа независимо.

Таблица 5. Геометрические параметры молекул Ni(acacen) и Cu(acacen).

Расстояния в, углы в град.

Ni(acacen)

Cu(acacen)

РСА a

B3LYP/CEP-31G

ЭГ, rh1

3.0%

РСА a

B3LYP/CEP-31G

ЭГ, rh1

4.1%

r(C12-C13)

1.457

1.541

1.544(12)b

1.549

1.552

1.545(19)

r(C8-C6)

1.390

1.418

1.395(4)

1.387

1.422

1.403(4)

r(C12-N2)

1.474

1.492

1.471(7)

1.432

1.489

1.458(8)

r(N2-C7)

1.314

1.348

1.327(7)

1.293

1.346

1.317(8)

r(C-Hcр)

-

1.097

1.098(3)

-

1.095

1.113(4)

r(C6-O4)

1.293

1.320

1.291(5)

1.270

1.324

1.284(6)

r(N2-М)

1.874

1.889

1.879(10)

1.968

1.963

1.947(18)

r(O4-М)

1.857

1.869

1.862(10)

1.941

1.936

1.923(17)

C13C12N2

111.0

107.5

107.3(7)c

110.1

108.5

109.7(15)

C7C8C6

125.5

123.2

124.2(5)

123.0

124.9

125.2(7)

O4C6C8

123.5

124.0

125.4(5)

127.8

124.8

126.0(10)

(N2C12C13N3)

21.64

39.2

39.1(10)d

38.7

41.5

35.3(34)

(O4N2O5N3)

178. 2

174.0

171.3(56)

175.8

163.4

179.7(70)

цикл

532.9

526.5

526.7(12)

527.2

525.5

529.6(30)

(N)

359.5

359.6

356.8(12)

359.9

359.7

359.2(22)

a среднее значение расстояния в кристалле; b полная погрешность в величинах межъядерных расстояний, рассчитанная по формуле =(масш2+(2.5 МНК)2)1/2, где масш =0,002r; c погрешность в величинах валентных углов, равная 2,5МНК; d погрешность в величинах торсионных углов, равная МНК.

3.5. Обсуждение результатов.

3.5.1. Особенности геометрического строения.

Геометрические параметры rh1-структуры молекул приведены в табл. 4, 5 вместе с параметрами молекул в кристалле и расчетными параметрами (B3LYP/CEP-31G).

Комплексы никеля и меди M(salen) и M(acacen) имеют одинаковые особенности геометрического строения. Каждую из молекул можно представить как состоящую из нескольких взаимосвязанных структурных фрагментов. Она имеет пятичленный цикл MN2C2, находящийся в твист-конформации, при этом фрагмент NCH2-CH2N обладает этаноподобной структурой. Сумма внутренних углов в циклическом фрагменте составляет величину заметно меньше 540, что характерно для плоского пятиугольника. В то же время сумма валентных углов при атоме азота близка к 360, что соответствует плоской координации связей N2-C12, N2-C7 и N2-М. Связи N2-C12 и N2-C7 имеют разную длину, причем величина r(N2-C7) характерна для двойной связи N=C, а величина r(N2-C12) – для одинарной связи. Кроме того, молекулы имеют координационную полость MN2O2, стремящую приобрести плоское строение, независимо от природы центрального иона Ni2+(3d8) и Cu2+(3d9).

3.5.2. Положение метильных групп и внутреннее вращение в M(acacen).

В комплексах M(acacen) имеются два вида геометрически неэквивалентных групп СН3. Одну из них обозначим как CH3(CN), а вторую CH3(CO). Методом B3LYP/CEP-31G проведено сканирование поверхности потенциальной энергии комплекса Ni(acacen) в зависимости от торсионных углов (H20C14C7C8) и (H26C16C6C8) с учетом релаксации остальных геометрических параметров. Барьер внутреннего вращения группы CH3(CN) составил 4.0 ккал/моль, что существенно превышает барьер внутреннего вращения группы CH3(CO) (1.4 ккал/моль). Показано, что метильные группы обладают разной свободой внутреннего вращения, что объясняется их различным пространственным окружением.

3.5.3. Взаимосвязь электронного и геометрического строения комплексов Ni (II).

Ион Ni2+(3d8) в комплексах Ni(salen) и Ni(acacen) может находиться в низкоспиновом или высокоспиновом состояниях. Как следует из результатов расчетов (B3LYP/6-31G*), электронное состояние очень сильно влияет на геометрическое строение молекулы. Причем длины всех связей в лиганде оказываются практически одинаковыми, в то время как строение координационного центра NiN2O2 резко различается. Так, в низкоспиновом состоянии, 1А, координационная полость имеет почти плоское строение. В случае высокоспинового состояния 3В структура координационной полости представляет собой искаженный тетраэдр с намного большими расстояниями r(Ni-O) и r(Ni-N), чем в предыдущем случае. Координационная полость становится в значительной степени неплоской - торсионный угол (ONON) с величины 171.9°/172.3°, характерной для низкоспинового состояния, уменьшился до 122.7°/128.3° для Ni(salen) и Ni(acacen) соответственно. Описанное искажение геометрии соответствует эффективному увеличению объема центрального иона при его переходе из низкоспинового в высокоспиновое состояние.

Нами выполнен NBO-анализ распределения электронной плотности. Энергетическая последовательность 3d-атомных орбиталей для низкоспинового состояния комплексов никеля соответствует представлению теории кристаллического поля. Максимальную энергию имеет 3dyz- атомная орбиталь, лепестки которой направлены к атомам кислорода и азота. Эта энергетически невыгодная орбиталь оказывается свободной. Большое различие между энергией орбиталей 3dx2-y2 и 3dyz приводит к тому, что низкоспиновое состояние оказывается предпочтительнее высокоспинового.

По методу B3LYP/6-31G* для комплексов Ni(salen) и Ni(acacen) низкоспиновое состояние 1А по энергии оказывается ниже, чем высокоспиновое состояние 3В, на 9.08 ккал/моль и на 9.96 ккал/моль, соответственно.

Отмеченное выше различие в геометрической конфигурации молекул Ni(salen) и Ni(acacen) в зависимости от их электронного состояния позволяет предположить, что результаты, полученные в электронографическом эксперименте, косвенно свидетельствуют в пользу низкоспинового состояния комплексов никеля, имеющих близкое к плоскому строение координационной полости.

Основные результаты и выводы

  1. Электронографическим методом исследовано геометрическое строение молекул 4-фторанизола и 3,4-дифторанизола, комплексов Ni(salen), Cu(salen), Ni(acacen) и Cu(acacen).
  2. Масс-спектрометрическим методом установлено, что в условиях электронографического эксперимента пары всех изученных соединений состоят из мономерных молекул.
  3. Определен конформационный состав пара и структурные характеристики плоского конформера 4-фторанизола и плоских син- и анти-форм 3,4-дифторанизола электронографическим методом.
  4. В результате сканирования ППЭ молекулы 4-фторанизола определено, что барьер внутреннего вращения метильной группы (4.0 ккал/моль) в два раза больше барьера внутреннего вращения метокси-группы.
  5. С помощью NBO-анализа рассмотрены причины устойчивости плоских форм 4-фторанизола и 3,4-дифторанизола. Сформулированы выводы, отражающие взаимосвязь между положением заместителя (F) в бензольном кольце и наиболее выгодной конформацией молекулы.
  6. Электронографическим методом определено геометрическое строение комплексов Ni(salen), Cu(salen), Ni(acacen) и Cu(acacen) в газовой фазе.
  7. Установлено, что в комплексах металлов Cu(II) и Ni(II) геометрические параметры органических лигандов - длины связей C-C, C-N, C-O и большинство валентных углов согласуются в пределах погрешности их определения. Координационные связи М-О и М-N в комплексах Cu (II) заметно длиннее, чем в комплексах Ni (II), хотя строение координационной полости МО2N2 в четырех комплексах близко к плоскому, независимо от разного числа 3d–электронов в центральных ионах Ni2+ (3d8) и Cu2+(3d9).
  8. Установлено, что геометрические параметры координационной полости МO2N2 комплексов в кристаллах (РСА) с наименее плотной упаковкой в пределах погрешности экспериментов совпадают с аналогичными параметрами свободных молекул (ЭГ). Показано, что эффект упаковки оказывает существенное влияние на структурные фрагменты комплексов, обладающих значительной структурной нежесткостью - координационный узел и этиленовый мостик.
    Pages:     | 1 |   ...   | 2 | 3 || 5 |






© 2011 www.dissers.ru - «Бесплатная электронная библиотека»