WWW.DISSERS.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

   Добро пожаловать!

Pages:     ||
|

Теоретико-методологической основой исследования являются: концепции, раскрывающие специфику целостного педагогического процесса; концепции дифференцированного обучения математике; психологическая и общедидактическая теории деятельностного подхода к обучению; концепция личностно-ориентированного обучения; исследования, посвященные принципу профессиональной направленности обучения математике; работы, посвященные исследованиям в области социологии, проводящимся математическими методами.

Апробация и внедрение результатов исследования реализовывались в процессе обучения теории вероятностей и математической статистике студентов специальности «Социология» Астраханского государственного университета и Астраханского государственного технического университета. Основные теоретические положения и результаты исследования докладывались автором на двенадцатой, тринадцатой, четырнадцатой международных конференциях «Математика. Компьютер. Образование» (2005, 2006, 2007); на III Международной научной конференции «Россия и Восток. Обучающееся общество и социально-устойчивое развитие Каспийского региона» (Астрахань, 2005); на XLI Всероссийской конференции по проблемам математики, информатики, физики и химии (Москва, 2005); на десятой междисциплинарной научной конференции «Нелинейный мир» (Нижний Новгород, 2005); на межвузовском научно-методическом семинаре «Преподавание математики в высшей и средней школе» (Чебоксары, 2006); на первой Всероссийской научно-практической конференции «Синергетические идеи в образовании» (Астрахань, 2006); на Международной научно-практической заочной конференции «Теория и практика развития современного высшего профессионального образования» (Шадринск, 2006); на ежегодных итоговых научно-практических конференциях АГУ (2003–2007); на заседаниях кафедры математического анализа Астраханского государственного университета.

По теме исследования опубликовано 6 статей, в том числе одна в научном издании, рекомендованном ВАК РФ.

Достоверность и обоснованность результатов исследования обеспечивается опорой на теоретические разработки в области педагогики, психологии, методики преподавания математики; внутренней согласованностью выдвигаемых теоретических положений; использованием разнообразных методов исследования, адекватных поставленным задачам; итогами проведенного педагогического эксперимента.

На защиту выносятся следующие положения:

1. При обучении будущих социологов теории вероятностей и математической статистике в соответствии с требованиями ГОС дисциплины «Математика», принципом профессиональной направленности обучения математике в вузе целесообразно

1) среди всех разделов курса «Математика», представленных в ГОС ВПО для студентов специальности «Социология» выделить профессионально важные для социолога разделы;

2) ориентироваться на глубокое и полное усвоение студентами разделов математики, являющихся базой для освоения специальных дисциплин;

3) пополнить профессионально важные для социолога разделы курса «Математика» социологическими интерпретациями основных математических понятий, задачами социологического содержания.

2. Методика дифференцированного обучения теории вероятностей и математической статистике будущих социологов, включающая использование дифференцированных заданий как средства реализации дифференцированного обучения, осуществление профильной дифференциации математической подготовки посредством заданий социологического содержания и реализацию дифференцированного подхода к устранению затруднений, возникающих у студентов в процессе изучения теории вероятностей и математической статистики, позволяет повысить качество математической подготовки студентов и обеспечить формирование умений будущих специалистов применять математические знания в своей профессиональной деятельности.

Структура диссертации. Диссертация состоит из введения, двух глав, заключения, библиографического списка и приложений.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность темы, формулируются проблема, цель, объект, предмет, гипотеза и задачи исследования, раскрывается его научная новизна и теоретическая значимость, практическая значимость и положения, выносимые на защиту.

В первой главе «Теоретические основы дифференцированного изучения курса «Математика» студентами-социологами в высшей школе» содержится три параграфа.

В первом параграфе этой главы «Особенности содержания и методов осуществления математической подготовки студентов-социологов в высшей школе» проведен анализ государственного образовательного стандарта высшего профессионального образования, современных подходов педагогов и методистов к проблеме обучения математике студентов-гуманитариев, профессионального поля и профессиональной деятельности будущего социолога.

Анализ ГОС ВПО, профессионального поля и профессиональной деятельности будущего социолога позволил нам выделить профессионально важные разделы математики для социолога. К ним относятся матричная и векторная алгебра, теория дифференциальных уравнений и систем дифференциальных уравнений, теория вероятностей, случайные процессы, статистическое оценивание и проверка гипотез, статистические методы обработки экспериментальных данных, теория корреляции.

Опыт коллег и личный опыт преподавания математики студентам-гуманитариям, в частности социологам, показывает, что большинство студентов негативно настроены к изучению математики, имеют низкую довузовскую подготовку, не имеют навыков самостоятельной работы. В итоге это приводит к тому, что у студентов возникают затруднения в процессе изучения математических дисциплин. Ввиду этого преподавателю необходимо использовать следующие методы в процессе обучения математике студентов-социологов: осуществлять профессиональную направленность математической подготовки, использовать дифференцированный подход, осуществлять работу по устранению затруднений студентов.

В результате анализа проблемы преподавания математики студентам-гуманитариям было установлено, что при реализации математической подготовки студентов-гуманитариев, в частности будущих социологов, в основном встречаются два подхода. Представители одного из них
(Г.Д. Глейзер, А.М. Кириллов, В.И. Михеев, Н.Х. Розов и др.) считают, что курс математики для гуманитариев должен быть общеобразовательным, т.е. знакомить студентов с основополагающими понятиями и фактами, которые являются общекультурными ценностями. Сторонники другой точки зрения считают, что кроме обеспечения общеобразовательной функции курс математики должен быть профессионально ориентирован с учетом специфики их будущей профессиональной деятельности (А.М. Ахтямов, Т.А. Гаваза, В.А. Кузнецова, Н.В. Панина, А.А. Соловьева и др.). В нашем исследовании мы придерживаемся второй точки зрения и выделяем следующие специфические особенности содержания курса «Математика» для студентов-социологов:

1) направленность курса «Математика» на фундаментальную подготовку студентов-социологов. При этом среди всех разделов курса «Математика», представленных в ГОС ВПО для студентов специальности «Социология» нами выделены профессионально важные для социолога разделы;

2) направленность курса «Математика» на специальную подготовку, т.е. ориентация на глубокое и полное усвоение студентами разделов математики, являющихся базой для освоения специальных дисциплин. При этом знания студентов по остальным разделам курса должны быть достаточными для освоения профессионально значимых;

3) направленность на профессиональную деятельность социолога, т.е. насыщение профессионально важных разделов курса «Математика» социологическими интерпретациями основных математических понятий, задачами социологического содержания, что способствует формированию умений будущих социологов применять математические знания в своей профессиональной деятельности.

Во втором параграфе этой главы «Теоретические аспекты дифференцированного обучения математике в высшей школе» проводится анализ психолого-педагогической и методико-математической литературы по проблеме дифференцированного обучения математике, рассматриваются различные концепции дифференцированного обучения математическим дисциплинам в высшей школе.

Авторы различных концепций дифференцированного обучения математике замечают, что дифференциация обучения является эффективным дидактическим средством ориентации обучения на удовлетворение образовательных потребностей студентов и получение качественного образования. Основным средством реализации дифференцированного обучения математике являются дифференцированные задания.

Проведенный анализ показал, что проблема дифференцированного обучения теории вероятностей и математической статистике студентов, в частности социологов, недостаточно освещена в диссертационных исследованиях. Например, среди методических работ по дифференцированному обучению не встречаются исследования, имеющие целью не только повышение качества математической подготовки студентов, но и реализацию профильной дифференциации, дифференцированного подхода к устранению затруднений, возникающих у студентов при изучении математики. Реализации этих направлений при обучении студентов-социологов теории вероятностей и математической статистике уделено внимание в нашем исследовании.

Взяв за основу определение дифференцированного обучения Н.А. Семиной, и внеся в него свои коррективы в связи с намеченными направлениями, под дифференцированным обучением мы будем понимать форму (способ организации) обучения, которая характеризуется: едиными для всех студентов группы стратегическими целями и меняющимися для каждого в динамике обучения практическими целями; реализацией этих целей через содержание учебного материала, ориентированное на профиль студентов, включающее в себя систему заданий, обеспечивающую каждому студенту работу в индивидуально избираемом темпе; руководством преподавателя деятельностью каждого студента в группе с учетом типологических различий и возможностей каждого.

В третьем параграфе приведены разработанные нами методические пути реализации дифференцированного обучения теории вероятностей и математической статистике студентов-социологов в высшей школе. К ним относятся:

1) использование дифференцированных заданий, обеспечивающих качественную математическую подготовку студентов;

2) реализация профильной дифференциации математической подготовки студентов-социологов посредством заданий социологического содержания;

3) дифференцированный подход к преодолению затруднений, возникающих у студентов-социологов при изучении теории вероятностей и математической статистики.

Разрабатывая дифференцированные задания для изучения теории вероятностей и математической статистики, мы основывались на типологии дифференцированных заданий В.А. Гусева. В нашем исследовании мы выделяем три типа дифференцированных заданий, однако вносим изменения в структуру заданий второго и третьего типов.

К первому типу заданий относятся дифференцированные задания для устного дифференцированного опроса. Конструкция их такова: общая постановка проблемы, затем система вопросов, обеспечивающих возрастание уровня требований к студентам. Посредством этих заданий преподаватель проверяет элементарные знания, выявляет затруднения студентов. Студенты, работая с такими заданиями, подготавливаются к выполнению более сложных заданий.

Второй тип дифференцированных заданий – дифференцированные задания двух видов среднего уровня сложности. Каждое дифференцированное задание второго типа первого вида представляет собой совокупность задач нарастающей сложности к одной и той же задачной ситуации.

В дифференцированных заданиях второго типа второго вида нет общей постановки проблемы, но все задачи одного задания связаны общей идеей и речь в них идет практически об одних и тех же объектах.

Третий тип составляют дифференцированные задания двух видов более высокого уровня. Это творческие, исследовательские задания, предназначенные для индивидуальной работы студентов, как в аудитории, так и дома. Дифференцированные задания третьего типа первого вида –
это задачи, в которых предлагается найти несколько способов решения.

Дифференцированные задания третьего типа второго вида также состоят из одной задачи, но в рамках ее необходимо провести некоторое исследование. Такие задания составляются из задач социологического содержания.

К каждому типу дифференцированных заданий нами сформулированы требования по их составлению.

Следующий путь реализации дифференцированного обучения студентов-социологов теории вероятностей и математической статистике – профильная дифференциация, которая осуществляется посредством заданий социологического содержания. Эти задания являются следствием дифференциации математической подготовки студентов. Они разработаны нами к профессионально важным для социолога разделам теории вероятностей и математической статистики: «Формула полной вероятности. Формула Байеса», «Формула Бернулли. Локальная и интегральная теоремы Муавра-Лапласа. Теорема Пуассона», «Случайные величины», «Статистические оценки параметров распределения», «Элементы теории корреляции», «Статистическая проверка статистических гипотез». Эти задания являются особыми, специфическими, не такими как для экономистов, юристов и других категорий специалистов. Специфика их заключается в том, что по содержанию эти задания именно социологические, т.е. в них используются фрагменты профессионально значимой для социолога информации, термины из области профессиональной деятельности социолога, рассматриваются интересующие социолога проблемы, речь идет о методах, применяемых социологом (социологический опрос, анкетирование, интервью). При подборе и составлении таких заданий преподавателю необходимо соблюдать определенные требования, которые сформулированы нами в этом параграфе.

Посредством решения студентами заданий социологического содержания происходит расширение профессионального кругозора студентов, формирование у них первичных профессиональных умений, изменяется отношение студентов к изучению математики. С помощью заданий социологического содержания происходит реализация профильной дифференциации.

Pages:     ||
|



© 2011 www.dissers.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.